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ABSTRACT

The Special Theory of Relativity takes us to two results that presently are considered “inexplicable” to many
renowned scientists, to know:

-The dilatation of time, and
-The contraction of the Lorentz Length.

The solution to these have driven the author to the development of the Undulating Relativity (UR) theory,
where the Temporal variation is due to the differences on the route of the light propagation and the lengths
are constants between two landmarks in uniform relative movement.

The Undulating Relativity provides transformations between the two landmarks that differs from the
transformations of Lorentz for: Space (x,y,z), Time (t), Speed (), Acceleration (d), Energy (E), Momentum

( p), Force ( F), Electrical Field (E), Magnetic Field ( B), Light Frequency ( Y), Electrical Current (J) and
“Electrical Charge” ( Q).

From the analysis of the development of the Undulating Relativity, the following can be synthesized:

- It is a theory with principles completely on physics;

- The transformations are linear;

- Keeps untouched the Euclidian principles;

- Considers the Galileo’s transformation distinct on each referential;

- Ties the Speed of Light and Time to a unique phenomenon;

- The Lorentz force can be attained by two distinct types of Filed Forces, and

- With the absence of the spatial contraction of Lorentz, to reach the same classical results of the special
relativity rounding is not necessary as concluded on the Doppler effect.

Both, the Undulating Relativity and the Special Relativity of Albert Einstein explain the experience of Michel-
Morley, the longitudinal and transversal Doppler effect, and supplies exactly identical formulation to:

Vv V
Aberration of zenith = thC:—/ 1-

F .
Fresnel's formula = C'=— +V(1— )

2
Mass (M) with velocity (V) = [resting mass (fﬂC)]/Jl—% )

E=mc?.
Momentum :p%
-V
c
Relation between momentum (p) and Energy (E) = E=C./ ma.c? -|-

V

Relation between the electric field ( E) and the magnetic field ( B) = BZF xE.

ol
Biot-Savant's formula =>B= K
2R

Louis De Broglie’s wave equation :>w(x, t#a.Si V’{Zﬂ’){ _S)J;u :%
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Undulating Relativity
8 1 Transformation to space and time

The Undulating Relativity (UR) keep the principle of the relativity and the principle of Constancy of light
speed, exactly like Albert Einstein’s Special Relativity Theory defined:

a) The laws, under which the state of physics systems are changed are the same, either when referred to a

determined system of coordinates or to any other that has uniform translation movement in relation to the
first.

b) Any ray of light moves in the resting coordinates system with a determined velocity c, that is the same,
whatever this ray is emitted by a resting body or by a body in movement (which explains the experience of
Michel-Morley).

Let's imagine first that two observers O and O’ (in vacuum), moving in uniform translation movement in
relation to each other, that is, the observer don’t rotate relatively to each other. In this way, the observer O
together with the axis x, y, and z of a system of a rectangle Cartesian coordinates, sees the observer O’
move with velocity v, on the positive axis X, with the respective parallel axis and sliding along with the x axis
while the O’, together with the x’, y’ and z’ axis of a system of a rectangle Cartesian coordinates sees O
moving with velocity —V’, in negative direction towards the x’ axis with the respective parallel axis and sliding
along with the x’ axis. The observer O measures the time t and the O’ observer measures the time t' (t # t').
Let's admit that both observers set their clocks in such a way that, when the coincidence of the origin of the
coordinated system happens t =t’ = zero.

In the instant that t =t = 0, a ray of light is projected from the common origin to both observers. After the
time interval t the observer O will notice that his ray of light had simultaneously hit the coordinates point A (X,
y, z) with the ray of the O’ observer with velocity ¢ and that the origin of the system of the O’ observer has
run the distance v t along the positive way of the x axis, concluding that:

XC+y+ 22—’ =0 1.1

X =X-Vt. 1.2
The same way after the time interval t’ the O’ observer will notice that his ray of light simultaneously hit with
the observer O the coordinate point A (X’, y’, Z') with velocity ¢ and that the origin of the system for the
observer O has run the distance v’t’ on the negative way of the axis x’, concluding that:

X2 + y’2 +22_c212=0 13
x=xX+Vt. 1.4
Making 1.1 equal to 1.3 we have

x2+y2+22—02t2=x’2+y’2+z’2—c2t’2. 15
Because of the symmetry y =y’ end z = Z', that simplify 1.5 in

X —c’ P =x?-ct? 1.6

To the observer O x’' = x — v t (1.2) that applied in 1.6 supplies

x* — ¢ t* = (x — v t)* = ¢* t'* from where

g VX
t'=t 1+F & 17

To the observer O’ x = X’ + v’ t' (1.4) that applied in 1.6 supplies

xX+Vv t’)2 —c®t* =x? = c® t” from where
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( fJ1+"2 /X Ls

e
Table |, transformations to the space and time
X =x-vt 1.2 x=xX+vt 1.4
y =y 1.2.1 y=y 141
zZ=z 1.2.2 z=Z7 1.4.2

/v2\/x Iy V2 2\/><
tt1+c2 & 17 tt1+C2 g 1.8

From the equation system formed by 1.2 and 1.4 we find
vt=vtor Mt ZMt' (considering t>0 e t'>0) 1.9

what demonstrates the invariance of the space in the Undulatory Relatitivy.

From the equation system formed by 1.7 and 1.8 we find

V2 X V2 /X
\/1+(32 & \/1+CZ I =1 1.10

Ifin 1.2 x’ = 0 then x = v t, that applied in 1.10 supplies,

1/1—\/?2 . /1+\,F =1 1.11

Ifin 1.10 x = ct and x’ = ¢ t’ then

(1—‘_’)(1+YJ -1 112
C C

To the observer O the principle of light speed constancy guarantees that the components ux, uy and uz of
the light speed are also constant along its axis, thus

X_dx_  y_ dy z dz
todt T dt Mt dt - e

and then we can write

\/1+v2 /X \/1+v2 /Uy

A VE & 114
With the use of 1.7 and 1.9 and 1.14 we can write
|V|t‘\/v22\/x\/v22\/uy
v T 1+C2 = 1+02 2 1.15

Differentiating 1.9 with constant v and v', or else, only the time varying we have

_ M _dt
Mdt=Mdt or M =3t 1.16

butfrom115——,/1+v— 2Vu}‘the dt= dl;/l+\é2 Z\éZU) 1.17

M

Being v and Vv’ constants, the reazons M and — in 1.15 must also be constant because fo this the

o V2 X _ax_ |

differential of |1+ must be equal to zero from where we conclude — =—; =UX, that is exactly
? t dt

the same as 1.13.
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To the observer O’ the principle of Constancy of velocity of light guarantees that the components u’x’, u'y’,
and u’z’ of velocity of light are also constant alongside its axis, thus

X dx_,, V. dy .., 7 _d?
t=dt =g Y e g Ye o
and with this we can write ,
V2 /X VZ  A/UX
\/1+02 3 \/1+02 S 1.19

With the use of 1.8, 1.9, and 1.19 we can write

M _t J V2 2\/>< J V2 AU
M =¥ 1+C2 1+C2 = 1.20

Differentiating 1.9 with v’ and v constant, that is, only the time varying we have

dt
Mdt=dt or % =4t 1.21
but from 1.20 ||\\,41 \/1+ 2\/'Cl2J X then dt= df\/1+\é2 ZV‘Cl;X' 1.22

Being V' and v constant the divisions -—— and -+ in 1.20 also have to be constant because of this the

Mot

. . v‘2 X _dxX_ _
differential of must be equal to zero from where we conclude — =—z :UX', that is
c2 th t dt

exactly like to 1.18.

Replacing 1.14 and 1.19 in 1.10 we have

\/1 LV W \/1 LVZ L AUX

2 CZ 2 CZ =1. 1.23
To the observer O the vector position of the point A of coordinates (x,y,z) is
R=X"+y+K, 1.24
and the vector position of the origin of the system of the observer O’ is
RO=vi+0j+0K =Ro=vi. 1.25
To the observer O’, the vector position of the point A of coordinates (x’,y’,z’) is
R=XT+Yyj+ZK, 1.26
and the vector position of the origin of the system of the observer O is
Ro=-VtT+0j+0K =Ro=~VtT. 1.27
Due to 1.9, 1.25, and 1.27 we have, RO=—RO0. 1.28

As 1.24 is equal to 1.25 plus 1.26 we have
R=R0+R =>R=R-R0. 1.29

Applying 1.28 in 1.29 we have, R= R-Ro. 1.30
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To the observer O the vector velocity of the origin of the system of the observer O’ is

) v +0j+OK =v=w". 1.31
Tt
To the observer O’ the vector velocity of the origin of the system of the observer O is
ARo_ -, 1 "
From 1.15, 1.20, 1.31, and 1.32 we find the following relations between Vand V'
V= Z_V' : 1.33
V 2\/u X
1+
¢
V= v 1.34

LV ux
1+C2 2

Observation: in the table | the formulas 1.2, 1.2.1, and 1.2.2 are the components of the vector 1.29 and the
formulas 1.4, 1.4.1, and 1.4.2 are the components of the vector 1.30.

§2 Law of velocity transformations U and o

Differentiating 1.29 and dividing it by 1.17 we have

R_ R g UV _gv -
dt d ]__|_V72 _@X ]__|_V72 _%X VK- |
[\/ ¢ "2 2
Differentiating 1.30 and dividing it by 1.22 we have
R dR-dRo B oV o -
dt A J V2 ux VK |
dt\/1+ 2 1+ 2t
Table 2, Law of velocity transformations U and U'
u— u—v
U‘:— U=——
\/-K 2.1 \/-K' 2.2
U =4V w4 X+
—\/-K 2.3 —\/-K' 2.4
' =ﬂ uy=——=~L y
uy 7K 2.3.1 y= 2.4.1
7= Uz _£
uz= N 232 | UZ= K 24.2
_M _M
|\}| =K 1.15 K 1.20
JK= /]_+ng _%)‘ 2.5 JK \/]_+\é2 Z\/Clgxl 2.6
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Multiplying 2.1 by itself we have

U, /1+ 2\/2u><
U= u u

= 5 . 2.7
Ve 2VUX
¢
Ifin 2.7 we make u = c then U’ = ¢ as it is required by the principle of constancy of velocity of light.
Multiplying 2.2 by itself we have
V2 2\/u X
\/1+ o T
U= 5 . 2.8
V 2v'u X
1+ 5
2 ¢
If in 2.8 we make u’ = c then u = c as it is required by the principle of constancy of velocity of light.
c—Vv
If in 2.3 we make ux = ¢ then UX= > =C as it is required by the principle of constancy of
14V Y
et e
velocity of light.
. o _ .
If in 2.4 we make u'x’ = ¢ then UX > =C as it is required by the principle of constancy of
% 2\/c
1+
¢

velocity of light.

Remodeling 2.7 and 2.8 we have

2 1—f“

Ve A/U'X c2
\/1+C2 2 ; A 2.10

=

The direct relations between the times and velocities of two points in space can be obtained with the
equaliies =0—=UX=0=UX=V coming from 2.1, that applied in 1.17, 1.22, 1.20, and 1.15 supply

dt= dL/1+V 2VV:d'[ dt 211
c? 1- V2

¢
dt=dt 1+, +20 =gt= AL 212
1+\é2
|V| V
N= J A i
2.14

/TZ o '_ﬁ'
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Aberration of the zenith

To the observer O’ along with the star u'x’ = 0, U’y = ¢ and u’z’ = 0, and to the observer O along with the
Earth we have the conjunct 2.3

ux-v =UX=V, C=—=——— :Uy_Q/ v ,uz =0,
/1 +v2 2VUX / v2 v
2z c2 2

UI\/U)g +U)F +uZ Z\/V2 [QIl—CZJ +0? =C exactly as foreseen by the principle of relativity.

To the observer (0] the light propagates in a direction that makes an angle with the vertical axis y given by

tang= _ vkc 2.15
uy v2
1— 1—
that is the aberration formula of the zemth in the special relativity .
If we inverted the observers we would have the conjunct 2.4
| ] 1 o . u
0=—__UXtv — ;>ux:—v,C= > y =u'y'=c|1-
vZ2  2v'u Vv —v
I+ += 1+ +
CZ
2
1 1,9 P 1,0 1 VQ 02
U'=Jux® +u'y* +u'z? = |(~v'P + - |+ =c
tangc:u,xz -V _ Ve 216

uy’ v? v?
/1, 1Y
C C?

that is equal to 2.15, with the negative sign indicating the contrary direction of the angles.

Fresnel’s formula

Considering in 2.4, UXZC/I"I the velocity of light relativily to the water, \/=V the velocity of water in
relation to the apparatus then UX=C' will be the velocity of light relatively to the laboratory

1
_c/nv _ c/n+v (c +vIl A +2v)_2 N(c +VI1 1(v2 Z\/H
- 2 2 2 —\n
\/1+V +2vdn \/1+v +2\, n c° nc n 2\¢c> nc

c? nc

¢ nc
Ignoring the term V2/C2 we have

2
o Sqv]1-V |=Cqv- V2 v
n nc/~n ° n? nc

and i |gn0r|ng the term V2 /NC we have the Fresnel's formula

:_ +V_ \{1_ HZJ 2.17
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Doppler effect

Making r? =X2-|-y2+Z2 and r'2:x'2+y'2+z'2 in 15 we have I?—Ct?=r?-ct? or

(a a(rct! _ o P (e )/ Vo 2V)
(I’ Ct)—(l’—Ct rrct replacing then I'=Cl, '=Cl and 1.7 we fmd(l’ Ct) (r—ct ].+C2 e

as CZXKVZVV\,) then %(k r—vvt):%,(k'r'—vv't'uhg —%)‘ where to attend the principle of relativity

we will define k':Kf1+\é22 %2\? 2.18

Resulting in the expression (k r—vvt):(k'r'—w't') symmetric and invariable between the observers.

To the observer O an expression in the formula of tp(l’,t)z f(k I’—Wt) 2.19
represents a curve that propagates in the direction of R. To the observer O’ an expression in the formula of

1 1 1 1.1 131
wr,t)=fKr-wt') 2.20
represents a curve that propates in the direction of R.
Applying in 2.18 k=7 K'= /1,, 1.14,1.19, 1.23, 2.5, and 2.6 we have

A /1’

AM=—2L_ ¢ j=—2_ 2.21
that applied in c:y/1=y'/1' supply, Y=yJK and y:va : 2.22

Considering the relation of Planck-Einstein between energy (E) and frequency (Y), we have to the
observer O E=hy and to the observer O’ E=hy that replaced in 2.22 supply

E=E/K and E=EVK'. 223

If the observer O that sees the observer O’ moving with velocity v in a positive way to the axis x, emits
waves of frequency Y and velocity c in a positive way to the axis x then, according to 2.22 and UX=C the

observer O’ will measure the waves with velocity ¢ and frequency Y=y(1—\—C/J 2.24

that is exactly the classic formula of the longitudinal Doppler effect.

If the observer O’ that sees the observer O moving with velocity —v’ in the negative way of the axis x’, emits
waves of frequency y and velocity c, then the observer O according to 2.22 and u XZ—\} will measure
waves of frequency Y and velocity ¢ in a perpendicular plane to the movement of O’ given by

rl_V*
=y 1_F , 2.25
that is exactly the formula of the transversal Doppler effect in the Special Relativity.
§3 Transformations of the accelerations d and d

Differentiating 2.1 and dividing it by 1.17 we have

ad du/VK (U v)vdux’K\/K:>6t a ( v)\gax

&t dvK Ve duK K? +
Differentiating 2.2 and dividing it by 1.22 we have

do_dd/VK V duxX/KJVK d V dx

Far N (d—V)CZ /K =d= K (U_V')—zW- 3.2
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Table 3, transformations of the accelerations d and d

a+(u—v)6"z%x o1 | a=giV)55: s
AX=0 )y & a0 | ax=t—Uxw) 5 2% s
dy= a‘eruy@ 2)2( 33.1 y —u yg’z f‘gﬁ 3.4.1
d7=2hzy & Jaa —a—lj—uzé’z fg 242
d=2 TR 39
K=1+‘é_§—%’ 35 | K= 1+‘(’:2 e pr

From the tables 2 and 3 we can conclude that if to the observer 0 UA=Z€Il and C* =UX -|-Uy2 +UZ,
then it is also to the observer O' U =Z€I " and C? =u'x'2+u'y'2+u'z'2, thus U is perpendicular to d
and U' is perpendicular to 3 as the vectors theory requires.

Differentiating 1.9 with the velocities and the times changing we have, tdwvdet dwvdt, but

considering 1.16 we have, VA&V dt=td\=t dV 3.7
Where replacing 1.15 and dividing it by 1.17 we have d\'/ = dV or d— a 3.8

We can also replace 1.20 in 3.7 and divide it by 1.22 deducing
|}
dV_ av or d= 3.9
dt dtK K" '

The direct relations between the modules of the accelerations a and a’ of two points in space can be

obtained with the U =0=U X=0—=d X=0=0=V=UX=V coming from 2.1, that applied in 3.8 and

3.9 supply
d= a a and d= d d 3.10

VW, VP vZ A0 ., V2
1(:2(:21—(:2 102+c2 1+C2

That can also be reduced from 3.1 and 3.2 if we use the same equalities
U =0=UX=0=d X=0=U0=V=UX=V coming from 2.1.

84 Transformations of the Moments p and [j

Defined as p:n(u)u and P ZmI(U')Ul : 4.1
where W(U) and m(U) symbolizes the function masses of the modules of velocities U=|q and U'=|U'| .

We will have the relations between n"(U) and m'(u') and the resting mass m,, analyzing the elastic
collision in a plane between the sphere s that for the observer o moves alongside the axis y with velocity uy
= w and the sphere s’ that for the observer O’ moves alongside the axis y’ with velocity u’y’ = -w. The
spheres while observed in relative resting are identical and have the mass m,. The considered collision is
symmetric in relation to a parallel line to the axis y and y’ passing by the center of the spheres in the moment
of. Collision.

Before and after the collision the spheres have velocities observed by O and O’ according to the following
table gotten from table 2
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Sphere [ Observer O Observer O’

Before s UXS=Zer¢, uys=w Uxs=-V, uy s:v@
Collision | s | UXS=V, UyS= 1—V§ UXs=zer, uys=

After s UXS=z€er¢ uys=—w UXs=-V, uys=-w, 1—%2
Collision | s | UXS=V, Uy5=W, 1—V§ uUXs=zer, uys=w

To the observer O, the principle of conservation of moments establishes that the moments pX:fT(U)UX

and py:n(u)uy, of the spheres s and s’ in relation to the axis x and y, remain constant before and after
the collision thus for the axis x we have

rr{, Juxg+uys ).stm(,/uxs’3+uys2 pxs': n{,/ux§+uy§ )stm{,/uxs’fwys’2 Lxs,

where replacing the values of the table we have

2 2
2 2
\/VZ ( —W, 1—\é ] V= \/VZ [W 1—\(; ] \/ from where we conclude that W=W,

and for the axisy

rr{,/ux§+uy§ ).Jysm{,/uxs’3+uys2 Lys': n{,/ux§+uy§ )Jysm{,/uxshuys’f }Jys,

where replacing the values of the table we have

- \/v2+[—w 1—"@2)2 (1% :—n(w)vwrv{\/v%{w 1—%}2 w1

simplifying we have

)= W[ i JNF hre hen W0 becones
m0)= 'T[V2+02 1— Jrzn(o n(v)\/l—izm(v \/7\/2

but n(O) is equal to the resting mass m, thus

)=
@

that applied in 4.1 supplies p:n(u)U=

with a relative velocity V=U :>fT'(U)= m 4.2

u2
e

mu

-
e

With the same procedures we would have for the O’ observer

4.1
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m()=—2 43

u‘2
e
AR (0]
and p'—m(u)u'— = - 4.1
u
e
Simplifying the simbology we will adopt m:n(u): M > 4.2
u
e
and M=m(U)= 1”?Ju2 43
i3
that simplify the moments in P=IMU and p‘=m'u'. 4.1
Applying 4.2 and 4.3 in 2.9 and 2.10 we have
3 V2 ANUX . _ V2 AUX
m—rﬁ\/1+F+T =m=mMVK and M= 1+? ?:m—m\/K 4.4

Defining force as Newton we have F:$ 2%5%[) and F' _Eﬁ _d(r(;?tu) with this we can define then
kinetic energy (Ek ,Ek)as

E =IF.d?=l%gTU).d:{=ld(rm)u=l(u2dmmud9,

and E;:IP.oR =Iﬁr§tl).d? :Id(m'u')u' =I(u'2dm'+m'u'du).

Remodeling 4.2 and 4.3 and differentiating we have MY C2—ru? ZI'T])ZC2 —u’dmrmudu=c2dr and
m?c®>—m®? U'ZZI'T'@)ZC2 —u® dmlkm'u'du':czdm, that applied in the formulas of kinetic energy

suppiies B, = | CAm=mG —m? =E—E, ang B, = | Cdri=mC’ —m@ =E—&, 43
my My

where E=ME and E=mM¢c? 4.6

are the total energies as in the special relativity and Eo Zm)CZ 4.7
the resting energy.

Applying 4.6 in 4.4 we have exactly 2.23.

From 4.6, 4.2, 4.3, and 4.1 we find

E=c/m?2c?+p? and E'=Cy/m’c?+p~ 4.8

identical relations to the Special Relativity.

Multiplying 2.1 and 2.2 by m, we get
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u u \Y E
m)u'Z - m>u2 _ m)uz = =mu-my=p=p-5v
A

g W~ T YV oy —midf-miv =>p=p—5 V.

P e o

Table 4, transformations of moments p and F’

ﬂ=p—§v 4.9 p=ﬁ—§v 4.10
PX= px_gv 411 pPX= p'X'+§V' 4.12
p y =py 4111 | py= p y 4.12.1
pz'=pz 4.11.2 pzzpz' 4.12.2
E=E/K 2.23 E=EVK 2.23
m=rr{u)= m)uz s2 | m=miu)= m)u'Z 43
l—? 1- 2
mM=m/K 44 m=mJ/K 34
E =E-E 45 '—E_F, 45
E=mc¢ 4.6 E=m'c? 4.6
Eo :m)CZ 4.7 E0 :m)CZ 4.7

Wave equation of Louis de Broglie

The observer O’ associates to a resting particle in its origin the following properties:

-Resting mass m,

-Time fzto
-Resting Energy Eo =I’T'[)C2

-Frequency yo:_EI'TO:mi’lf

-Wave function Yp=SERTY,t, with a = constant.

The observer O associates to a particle with velocity v the following:

-Mass m:n(v): m)VZ (from 4.2 where U=V)

e
-Time t= Vtzo 2\/V: tovz (from 1.7 with UX=V and T =t,)
R
-Energy E= = = me’ (from 2.23 with UX=V and E=E,)

V2 V2
A
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Yo _Mc?/h

V2 V2
e | 1‘?

-Distance x = vt (from 1.2 with X’ =

-Wave function Y/=aSerRzy,t, _aser?_nyJ 1/ t./1—; aselﬂny(— )wnh u=

2
-Wave length u—y/l Ci/ E y[?:%_p (from 4.9 with [5 P = =0

To go back to the O’ observer referential where l]l =O:>U X =0, we will consider the following variables:

-Frequency Y= (from 2.22 with UX=V and y=y0)

-Distance x = v't’ (from 1.4 with x’ = 0)

Time t=t' \/1+\élz2 +2(;/2 O \/1+VFI2 (from 1.8 with u XZO)

Q
-Frequency y:y 1+? (from 2.22 with UXZO)

Vv
l1 V?
1+?

that applied to the wave function supplies

_aseliny( VX)_aseany\/ 1+ \/

-Velocity V= (de 2.13)

=aserz/t’,

e

85 Transformations of the Forces F and P

butas T =t, and Y'=Y, then '=yy,.

Differentiating 4.9 and dividing by 1.17 we have

@_d dE v L dEvJ _it VJ

T dR dwRE T YRl dte) T UK F{Fa)g | >
Differentiating 4.10 and dividing by 1.22 we have

d_d dE'V L_dEv‘J _LL V'J
B T o= | P T P = P{ra)? | 52
From the system formed by 5.1 and 5.2 we have

dE_dE' _

gt dr oo Fu=Fuo, 5.3

that is an invariant between the observers in the Undulating .Relativity.
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Table 5, transformations of the Forces F and F

F_—LF—(F uLJ 5_1 F=%LF4P-U')§J 52

F.x——LF%(F U)—J - = ﬂlz.[F'X'{P-U')Clz'J 5.5

=FyNK s41 | Fy=F'y'/JK 5.5.1
F'z'=FzA/K 542 | Fz=F'7'/JK 5.5.2
dE _dE
ot " dt 5.3 Fu=FdU 5.3

86 Transformations of the density of charge p, p "and density of current Jand J

dq

Multiplying 2.1 and 2.2 by the density of the resting electric charge defined as [, _d\6 we have

u u
\/pou'z_ pouz— PV _=pltt =pu-pw =3 =T 6.1
1- 1 -4

¢ J ; J ¢

pu _ pd _ p¥
and = — = =>pu=pt—-p¥V=J=J-pV. 6.2

T

Table 6, transformations of the density of charges p, p "and density of current J and J'

J=J-pv 6.1 J=J—p¥ 6.2
IX=I%pr 6.3 IX=JX+pV 6.4
J y=Jy 6.3.1 Jy:J' y 6.4.1
J7Z=Jz 6.3.2 Jz=J7 6.4.2
J=pu 6.5 J=/u 6.6
p= pou2 P ’:L.Z

1-Y 6.7 1_U7 6.8

c? c?

p':p\/'K 6.9 p=p VK’ 6.10
From the system formed by 6.1 and 6.2 we had 6.9 and 6.10.

87 Transformation of the electric fields E E and magnetic fields B, B

Applying the forces of Lorentz F= E-I-UXB and F= q E +u XB) in 5.1 and 5.2 we have

dE+itx8)~ | dE+oB)- [q(E+UXB)uLJ
and q(E+U>< B):FHEW'XB)—[q(Em’xB)U’ ]?J that simplified become

(E+ix8)~ | EroxB}-Ea)y | e EroxBl= | EHrB)-E0)% | ron

where we get the invariance of E.U=EU between the observers as a consequence of 5.3 and the
following components of each axis
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W R R L Exux!Eyuy\LEzuzj
EX4+U'y'B'zZ—U'zZ'B'y _\/KLEﬁuszusz 2 2 2 7.1
E'y+u'ZBX-u'XB'Z =% [Ey+uzBx—uxBz] 741
E'Z+u'XB'y—u'y B'X =% [Ez+uxBy-uyBx| 712
EXHJszuszh—l E'x'+u'y'B'z'—u'z'B'y'+EIXIUIX'V'+Eyu'y'VIJrE'Z'u'Z'V' 7.2

JK c? c? c?
Ey-+uzBx-uxBz :% [E'y+u'ZBX—u'XBZ] 721
Ez+uxBy—uyBx:% [E'Z+u'XB'Yy—u'y BX] 722
To the conjunct 7.1 and 7.2 we have two solutions described in the tables 7 and 8.

Table 7, transformations of the electric fields E, E and magnetic fields Be B

w_ EX{1 VU EX'(,, vu'x
E X:W(l_Fﬁ 7.3 EX:\/K'(:H 2 j 7.4

wa E V2 Vux| VB: E'v'(, v? vux') vB7
E y:\/T%/[]j-? _FJ_W 7.3.1 Eyzﬁgl(]j-g-k 2 J+ NS 7.4.1

. Ez(,, V* vux VB _E'Z(,,v? vux )| vBY
E'z _W(H? F}LW 7.3.2 EZ—F[HFJF 2 J N 7.4.2
B'X=B» 7.5 Bx=B'X' 7.6
B'y'= B)»"r% Ez 751 | By= B'y'—% EZ 7.6.1
B'z':Bz—% Ey 752 Bz:B'z'+§' E'Y 7.6.2
E'y'=EWK 7.7 Ey=E'y'VK' 7.8
E'Z=Ez/K 1 Ez=E'7VK 781
By:—%ﬁ(Ez 7.9 B'y'=—u XE7 7.10
Bz=%§(Ey 7.9.1 B'Z'=u?)s E'Y 7.10.1
Table 8, transformations of the electric fields E, E and magnetic fields Be B

w1 Y 1|0 V'

E'x :WLE)G(E'U)@J 7.11 EX:FLE X+(E' D’)?J 7.12

| - ) 1 1 0 1 151
E'v=— (Ey-vB Ey=———-(E'V+V'B'z

y \/K( \am j 7.11.1 y—m( y ) 7.12.1
E'z':%(Ez+vB9 711.2 Ez:%(E'z'—v'B'y') 712.2
B'xX=B» 713 | Bx=BX' 7.14
B'Y=By 7131 | By=BYY' 7.14.1
B'Z7=B? 7132 | Bz=B'7 7.14.2

16/200



Relation between the electric field and magnetic field

If an electric-magnetic field has to the observer O’ the naught magnetic component B=zerc and the

electric component E . To the observer O this field is represented with both components, being the
magnetic field described by the conjunct 7.5 and has as components

Bx=zer, By=— \ézE‘ \225\ 7.15

1
that are equivalent to BZFVXE. 7.16

Formula of Biot-Savart

The observer O’ associates to a resting electric charge, uniformly distributed alongside its axis x' the
following electric-magnetic properties:

-Linear density of resting electric charge f, = d)?

-Naught electric current |'=z€r
-Naught magnetic field B =zero=t =zerc

-Radial electrical field of module E =,/ E y2+E 7%= Zpg‘)R at any point of radius R=4/ yl2 +7'2 with
7T

the component E'X'=ze€r.

To the observer O it relates to an electric charge uniformly distributed alongside its axis with velocity UX=V
to which it associates the following electric-magnetic properties:

-Linear density of the electric charge p=————— Po (from 6.7 with u =v)
V2
e
\
-Electric current | =pV:p—°2
4V
1-"
CZ
-Radial electrical field of module E:—2 (according to the conjuncts 7.3 and 7.5 with
V
1-°
CZ
B=zero=U=zercand ux=v)
\
-Magnetic  field of components BX=Zer: By— \::ZE‘ BZI%‘ and  module
B= VE v E v 1 Po I where U, = being in the vectorial form
c T V2 27Z'€0R ZT[R 02

| e
Ho
B=or"

where U is a unitary vector perpendicular to the electrical field E and tangent to the circumference that
passes by the point of radius R=4/ y2 +7? because from the conjunct 7.4 and 7.6 EB=zerc

7.17
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88 Transformations of the differential operators

Table 9, differential operators

0_0, VO oJd_0 Vv

x oxca LloxTox & °2
ay. ay 8.1.1 8y ay. 8.2.1
o0_0 9_0

07 0z 8.1.2 0z o7 8.2.2
O_V 0, 1( VvV vxX)0 |, [O__ V' 0  1f v2 vx|0 |®4
o JKx K ETa ) | ot TRk Ik E T Jar
From the system formed by 8.1, 8.2, 8.3, and 8.4 and with 1.15 and 1.20 we only find the solutions

o0 Xlhto _ 8 X 'It' O
5(""?& —0 and CZ 8‘: 0 8.5
From where we conclude that only the functions ¥/ (2.19) and l//A (2.20) that supply the conditions

Oy , XItoy _ &p’ X't'oy'_

xea ™Mot Y -

can represent the propagation with velocity ¢ in the Undulating Relativity indicating that the field propagates
with definite velocity and without distortion being applied to 1.13 and 1.18. Because of symmetry we can also
write to the other axis

Oy yItoy _ o Oy', Y It' oy’ 04 81//+Z/t81//_0 81//'_'_2'/'['61,1/':0.

yiea tyTea ™y ea A o o
From the transformations of space and time of the Undulatory Relativity we get to Jacob’s theorem
VUX viu'x'
5()( Y.z t) - . deZt) —1+ Cz 8.8
dyz) — IK Ay

variables with ux and u’x’ as a consequence of the principle of contancy of the light velocity but are equal ais

J=J"and will be equal to one J=J"=1when UX=U'X"=C.

Invariance of the wave equation

The wave equation to the observer O’ is

& 82 82 1 &
OX* 8y‘2 o T e

where applying to the formulas of tables 9 and 1.13 we get ,
o, voy, & & 1| v 0 V2 VuUXx|o | _
(ax i &) L/K ox JK[“cz ?)ﬁ} oK

@/2 &2
from where we find

=Zerc
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&* > F 1P NF NP NUXF VP VP APUXP
Kty Ko cateaatvaa @ sa ca’ca & @
VE NG NP ANUXE AT AP +2\/3ux62 VX & VP
TR daa caa xR da T ca & ca
that simplifying supplies
82 82 F 1P NuxF VF VF NP VU &
Kae Ky e sa cae vt c @ ¢ a "
where reordering the terms we find
62 82 82 V2 2uX\1 & V(P X P u>€62
K @/2+K [1+CZ ch Fd 02(5)(2+02 aa e a2] Zerc 8.9
but from 8.5 and 1.13 we have
0 Xtd_ (0 uxa) az LAXE WRE
8x 2ot 8x c? ot 02 &Gt ¢t a?
that applied in 8.9 supplies the wave equation to the observer O 62 82 az 1 az =Zerc¢ 8.10

YR

To return to the referential of the observer O’ we will apply 8.10 to the formulas of tables 9 and 1.18, getting

0 V'O 62821v8 ve vux)of
(a—x-?ﬁ) Yy @ ?[ TR X m(“cz czj } =zerc

from where we find

F o ® P 1F NP 2\/362 WX F VRV
Kae Ky ez eareaa o & ¢ xXa carcar”t
zvsuxaz R R i +2\/2ux F N2F NUXF

TC A CX XA XX ¢ X& Far o a

VAU @ VU2 F VP
¢ &z ¢ ac cta
that simplifying supplies
kP 0O e @ 13 AUX P V& V2F NUXF VAR F
K Q) A car ¢ KA XK car o ar ¢ &
where reordering the terms we find
2 2 2
K 82 §2+K o (1+V +2\/Cl21XJé§22 _\é_z(gz+aézx a(azau +uc)§ gzjzzerc
but from 8.5 and 1.18 we have

o XNto 8 Lux 8) F L AUX F uUxX? &

=Z€ero

=Zzerc

xtea Taxtea) et mat e ar

that replaced in the reordered equation supplies the wave equation to the observer O’.
Invariance of the Continuity equation

The continuity equation in the differential form to the observer O’ is

@0+w zero:>@+aJX a]y+a]z =Z7erc 8.11

a ¥ x ya

where replacing the formulas of tables 6, 9, and 1.13 we get

[v 0 1(1+v vuﬂ me+(a v 8}J)€p‘)+83y+a\lz Zerc

J]Zax JK c? OX % ot
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making the operations we find
VOp_ Op  V Op_VWOp 0 Vv OIX_Vop V2 dp  0Jy 0Jz

ox ot ot ot ox ot ox @t oy oz

that simplifying supplies
Op_VWOp_ 0, v 0Jx_ 0dy 0Jz

X eatex @t oy o X

where applying JXpr with ux constant we get

Op_VWop , 0Ix, v dpux), 0Jy 0Jz_ Op_, 0JX, 0Jy 0Jz_
G2 o o T at +ay+az_zero:>—at+ax+ay+az_zerc 8.12

that is the continuity equation in the differential form to the observer O.

To get again the continuity equation in the differential form to the observer O’ we will replace the formulas of
tables 6, 9, and 1.18 in 8.12 getting

V0, 1 (., v? vUux'|o |, O V' 0 Yypy, 1), 0y 037 _
( Kot \/K'(1+F+?jﬁjp \/K‘+(a—x. ?ﬁ}‘] x+p\/)+a—y,+W_zerc

making the operations we find
_V'Op', 0p' V% Op' VUX'Op' OIX V'OIX V'Op' v20Op' 0JY  0J7 _
X T Te T @ dtox @ a Tox ot oy tar N

thaat simplifying éupplieéJ 53 53 53
py Vlulxl p; lxl_ll IXI Iyl IZI:
at @ o ox @ tey ar X

where applying J'X'Zp U'X" with u’x’ constant we get
op' VU'X'op' oJX _v'dpgux), oty  o0Jz _ op' oJ'X
& o @ o oy tor aT

that is the continuity equation in the differential form to the observer O’.

oJ'y'  0J'7 _
o T o7 57 =Zzerc

Invariance of Maxwell’s equations
That in the differential form are written this way

With electrical charge

T(;)’Ethe ogé_erveg% T?Eth)? obaaévslr O’aE 5
X, cky, Ez_p )
@(—F@_’_az_go 8.13 5X+@}+az 80 8.14
%B(XJrag/ergZ:O 8.15 a(f;x +6|53yy +5|SZZ' =0 8.16
By (EX__(B? Ey EX__B?7
ckz cEy__ BX cEZ cEY _ BX
@/ & - a 8.19 @, &l - al 8.20
GEX Bz By | EX_E&7__@By o
a x & ' Z K & '
BY_BX_ | 35,6, EZ BY BX_| 7716, EL
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%Z—%y:po\]x+souo%x 8.25 %—%:H}JX%%% 8.26
%X_%Z:%J)H%Ho%y 8.27 %—% =HeJ Yﬁ%% 8.28

Without electrical charge p=p'=ZeI’C and J=J =zerc

To the observer O To the observer O’

%(X+%§y+§z=0 8.29 %(X +a§’y +$az'z =0 8.30
§(X+%?/y+§z=0 8.31 %X +ag}y +5§ZZ' =0 8.32
Ey Ex_ Bz Ey EX_ BZ

X @/ a 8.33 Y @} aq 8.34
ckz cky__BX EZ_EY __BX

@/ o a 8.35 @, o a 8.36
cEX kz__ By EX_EZ__ABY

7 J 8.37 7 B F 8.38
By Bx_.  EZ BY BX_.  FEZ

X o Eollo a 8.39 X & Eolo a 8.40
Bz_By_,.  EX Bz _BY _. , EX

LY ot 5 8.41 y & Eobbo 8.42

X Z
&l =é 8.45

We demonstrate the invariance of the Law of Gauss in the differential form that for the observer O’ is

EX EY EI_p

= 8.14

X ¥ ad &
where replacing the formulas from the tables 6, 7, 9, and 1.18, and considering u’x’ constant, we get

[@w a}gx(l_w qu[“vj vux)_@zJ+

& calJK Y VK¢ &) JK
0| Ez{,,V* vux A vBy_p/K
AR R

2
making the products, summing and subtracting the term ?ﬁ , we find

cEX, v dEX_VUXEX v2uxac_x+a”Ey+v_ZaEy VUXEY VOBz

x 2ot dx ot gy o
LGBz, Vv Bz vuxEz voBy v CEX v GEX_pK
a c¢ca ¢ca a ¢x X g

+

that reordering results
_VZ(Q’EX uxaEX)_ 0Bz 0By 1azx) J{asx CEy, &z, V2 VU)ﬂ_pK

dxca) g a@a ca\ox d ald &) s
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where the first parentheses is 8.5 and because of this equal to zero , the second blank is equal to

Mo =—pu=—Fz
cEX a’Ey CEz\ ., V VUX V2 VUX P VUX_p VU
[ Yy ta\te czj (1+c2 ch & 5
cEX OFy+OFZ P 8.13

from where we get
X & a s

that is the Law of Gauss in the differential form to the observer O.

To make the inverse we will replace in 8.13 the formulas of the tables 6, 7, 9, and 1.13, and considering ux
constant, we get

[Q_XQWEx(Hvux) @’{Ey@ﬂgvux)ﬂsz}

N EaxJK\ K eTe STk
o[EZ(, v2 vux) vBy|_
i m[“cz e j K |

2
making the products, adding and subtracting the term KZW we get
CE X V$X+v'u'x'$>< VeU'X' CE X LEY VECEY v'u'x'fy
K ot X & ot & &g &
vaBz+£z+an‘E‘z’+vux$z’ vaBy+\lzai'>< \/2$X _pK
oY aZ ¢ a ¢ ad A HK K g
that reordering results in
VE(EX UX EX oB'Z _oB'Yy' 1cEX
TG R R

K & ot

&X &y EZ' 1+\/2 vux'|_pK
&y ¢ ) &

where the first blank is 8.5 and because of this equals to zero, the second blank is equal to

V (Po‘]' )():\} popl u X :% gotten from 8.26 and 8.45 resulting in

EX EY EZ LVUX V2 VUX' ), pVUX'_ g viuX
( A G czj L1+02 ej*gcz b C
E'X EY EZ_p

from where we get =-— that is the Law of Gauss in the differential form to the O’
X o T& .

observer.
Proceeding this way we can prove the invariance of form for all the other equations of Maxwell.
89 Explaining the Sagnac Effect with the Undulating Relativity

We must transform the straight movement of the two observers O and O’ used in the deduction of the
Undulating Relativity in a plain circular movement with a constant radius. Let’'s imagine that the observer O
sees the observer O’ turning around with a tangential speed v in a clockwise way (C) equals to the positive
course of the axis x of UR and that the observer O’ sees the observer O turning around with a tangecial
speed V' in a unclockwise way (U) equals to the negative course of the axis x of the UR.

In the moment t =t = zero, the observer O emits two rays of light from the common origin to both

observers, one in a unclockwise way of arc cty and another in a clockwise way of arc ctc, therefore cty = ctc
and ty = tc, because c is the speed of the constant light, and t;, and tc the time.
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In the moment t = t' = zero the observer O’ also emits two rays of light from the common origin to both
observers, one in a unclockwise way (useless) of arc ct’y and another one in a clockwise way of arc ct'c, thus
ct'y =ct'cand t'y = t'c because c is the speed of the constant light, and t'y, and t'c the time.

Rewriting the equations 1.15 and 1.20 of the Undulating Relativity (UR):

M_t [,V 2w
VTt 1+F = 1.15

M_E_\/ V2 A/UX
v =5" 1+?+T' 1.20

Making ux = u’x’ = ¢ ( ray of light projected alongside the positive axis x ) and splitting the equations we
have:

t zt(l—\—/) 9.1 t=t (1+!J 9.2
C C

V= v 9.3 V= V\/ 9.4

1-Y 147
C C
When the origin of the observer O’ detects the unclockwise ray of the observer O, will be at the distance
Vt; =V fu of the observer O and simultaneously will detect its clockwise ray of light at the same point of
the observer O, in a symmetric position to the diameter that goes through the observer O because
Ct, =Ct. =4, =t and cly=Ct =t |, =t . following the four equations above we have:

ot +VE —2R=t. :?T"\?/ 05

ctc+asz=27R:>fc=% 06

When the origin of the observer O’ detects the clockwise ray of the observer O, simultaneously will detect its
own clockwise ray and will be at the distance VEC :\,fZU of the observer O, then following the equations
1,2,3 and 4 above we have:

2R

Ctzc :27R+VEC :tz :ﬁ 9.7
ct2C=27R:>1‘2C=2LCR 05

The time difference to the observer O is:

2R 2R ARV

A=t —t.= = 9.9
L CTCcov cHv 2\

The time difference to the observer O’ is:

Nt t —2R_2R _ 4RV o1

T C ctd etk

Replacing the equations 5 to 10 in 1 to 4 we prove that they confirm the transformations of the Undulating
Relativity.
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810 Explaining the experience of lves-Stilwell with the Undulating Relativity

We should rewrite the equations (2.21) to the wave length in the Undulating Relativity:

A= VZ}L e and A= sz TR 2.21
He—"e \/1+02 e

Making ux = u'x’ = ¢ ( Ray of light projected alongside the positive axis x ), we have the equations:

x:(ﬁj and }L:(HLVJ 10.1
C C

If the observer O, who sees the observer O’ going away with the velocity v in the positive way of the axis x,
emits waves, provenient of a resting source in its origin with velocity ¢ and wave length 7\,,: in the positive
way of the axis x, then according to the equation 10.1 the observer O’ will measure the waves with velocity ¢
and the Wave length ?CD according to the formulas:

and Ap 10.2
N

If the observer O’, who sees the obsesrver O going away with velocity v’ in the negative way of the axis x,
emits waves, provenient of a resting source in its origin with velocity ¢ and the wave length x,; in the
positive way of the axis X, then according to the equation 10.1 the observer O will measure waves with
velocity c and wave lenght }\'A according to the formulas:

and K 10.3
MCia T

The resting sources in the origin of the observers O and O’ are identical thus 7\4: =7\:,:.

We calculate the average wave length A of the measured waves (XA,XD) using the equations 10.2 and
10.3, the left side in each equation:

R O e ]

We calculate the diffrence between the average wave length A and the emited wave length by the sources

M=)

M= 71%—\9{1{1—%)2 J—%F
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M= [1+1—2\_/+V_§ —2+2\_/J
1V c'c C
C

M_(l }VJ}LZF \éz 10.4
C

Reference
http://www.wbabin.net/physics/faraj7.htm

810 Ives-Stilwell (continuation)
The Doppler’s effect transversal to the Undulating Relativity was obtained in the §2 as follows:

If the observer O’, that sees the observer O, moves with the speed -V’ in a negative way to the axis x’, emits
waves with the frequency y and the speed c then the observer O according to 2.22 and UXZ—V will
measure waves of frequency Y and speed c in a perpendicular plane to the movement of O’ given by

y=y 1—\}? 2.25
For UXZ—\} we will have UX=Z€I'C and /1—\}? /1—|—% =1 with this we can write the relation between

the transversal frequency yzyt and the source frequency y=y,: like this

Y = Ve 105

With C=yt7\1 =y|: 7\:|: we have the relation between the length of the transversal wave 7\1 and the length of

1
the source wave 7\4:

A =Ne /1+V?2 10.6

The variation of the length of the transversal wave in the relation to the length of the source wave is:
M=k e [1H =xF( 14 —1)% (1+_V2 —1]_~”F v 107
c? c? 2c? 2 ¢

that is the same value gotten in the Theory of Special Relativity.

Applying 10.7 in 10.4 we have

N= A 10.8

1-V

C
With the equations 10.2 and 10.3 we can get the relations 10.9, 10.10, and 10.11 described as follows
2
» =xD(1—\_/) 109
C
And from this we have the formula of speed lé= — /X—A 10.10
D

A =Ne=JMNp 10.11

Applying 10.10 and 10.11 in 10.6 we have

A =Jhn DJ1+(1— JK_EJZ 1012
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http://www.wbabin.net/physics/faraj7.htm

From 10.8 and 10.12 we conclude that Ay <Ap <A, ALK . 10.13

So that we the values of }\'A and }\:D obtained from the Ives-Stiwell experience we can evaluate 7\1 , 7\4:,

\—é and conclude whether there is or not the space deformation predicted in the Theory of Special Relativity.

811 Transformation of the power of a luminous ray between two referencials in the Special Theory of
Relativity

The relationship within the power developed by the forces between two referencials is written in the Special
Theory of the Relativity in the following way:

Fo= Fa—vb 11.1
1- VU
2

The definition of the component of the force along the axis x is:

dpx_d(muy_d
==X ot gt ITLIX+ dt 11.2

For a luminous ray, the prmmple of light speed constancy guarantees that the component ux of the light
speed is also constant along its axis, thus

i( gli( UX= constant, demonstrating that in two ddl':: =Z7€rCand FX= nhX 11.3
The formula of energy is E= mé from where we have dm 1 dE 114
dt 2 dt '

E UX
From the definition of energy we have F =F.U that applying in 4 and 3 we have Fx= F.U—O7 115

t

Applying 5 in 1 we heve:
F.u—(F.U VLZ”
C

Vu
(1‘ ¢

From where we find that F I =F. or

Fo=

dE_dE
dt dt

A result equal to 5.3 of the Undulating Relativity that can be experimentally proven, considering the ‘Sun’ as
the source.

11.6

812 Linearity

The Theory of Undulating Relativity has as its fundamental axiom the necessity that inertial referentials be
named exclusively as those ones in which a ray of light emitted in any direction from its origin spreads in a
straight line, what is mathematically described by the formulae (1.13, 1.18, 8.6 e 8.7) of the Undulating
Relativity:

x_dx_ y_dy oz _dz
todt Ot Tdt KTt

1.13

=ux,¥ _Ay gy 22y, 118

26/200



Woldemar Voigt wrote in 1.887 the linear transformation between the referentials os the observers O e O’ in
the following way:

X=Ak+Bt 12.1
t=EX+-t 12.2

With the respective inverted equations:

"R >
X= A BE A BE

12.3

t

12.4

= + A
AFBE'"AFBE

Where A, B, E and F are constants and because of the symmetry we don’t consider the terms with y, z and

y,Z.

We know that x and x’ are projections of the two rays of lights ct and ct’ that spread with Constant speed ¢

(due to the constancy principle of the Ray of light), emited in any direction from the origin of the respective
inertials referential at the moment in which the origins are coincident and at the moment where:

t=t =zero 12.5

because of this in the equation 12.2 at the moment where t' = zero we must have E = zero so that we also
have t = zero, we can’'t assume that when t' = zero, X' also be equal to zero, because if the spreading

happens in the plane y'z' we will have x’ = zero plus T #Z€r

We should rewrite the corrected equations (E = zero):

X=Ax+Bt 12.6
t=Ft 12.7

With the respective corrected inverted equations:

_x_Bt 1o

A AF '
t

{=— 12.9
F

If the spreading happens in the plane y’ zZ’ we have x’ = zero and dividing 12.6 by 12.7 we have:

X_B

===V 12.10

t F

where v is the module of the speed in which the observer O sees the referential of the observer O’ moving
alongside the x axis in the positive way because the sign of the equation is positive.

If the spreading happens in the plane y z we have x = zero and dividing 12.8 by 12.9 we have:

X_ B B

S=——=\ o ==\ 12.11

t A A

where Vv’ is the module of the speed in which the observer O’ sees the referential of the observer O moving
alongside the x’ axis in the negative way because the signal of the equation is negative.

The equation 1.6 describes the constancy principle of the speed of light that must be assumed by the
equations 12.6 to 12.9:

X2 —Ct? =X?—Ct'? 1.6
Applying 12.6 and 12.7 in 1.6 we have:
(Ax+BtP —Cc?Ft2=x2—t?
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From where we have:

(mox2 )2t {FZ g ZA;E"J X?—Ct?

B> 2AB

X
where making A® = 1 in the brackets in arc and '}ZZ 02 sz =1 in the straight brackets we have

the equality between both sides of the equal signal of the equation.

| B 2ABX > B 2BX
Appllying A=1in LF C2 sz J =1 we have F? = CZ +— o 12.12
Appllying A = 1 in 12.11 we have — —B:B:\/ 12.11
Al '

That applied in 12.12 suplies:

F= 1/1+CZ Czt' F(X t') 12.12

as F(x, t) is equal to the function F depending of the variables x’ and t'.

Applying 12.8 and 12.9 in 1.6 we have:

oo (X _BtY ,t?
czt(AAchz

From where we have:

2 _(ot2 2 B? 2BX
Xt ( cht L:Z A202F2+A2c2FtJ

where making A% = 1 in the bracket in arc and

1 B? 2Bx _1
BRI +A2C2Ft in the straight bracket we

have the equality between both sides of the equal signhal of the equation.

Applying A =1and 12.10 in 1 B’ + 2BX =1 we have:
I = oy |

= F(X,t) 12.13

as F(x, t) is equal to the function F depending on the variables x and t.

We must make the following haming according to 2.5 and 2.6:

K= fl.—k\(,:2 2\,13( —=F=VK 12.14
V2 VX 1
K= 1+F =t =F= =K 12.15
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As the equation to F(X', t') from 12.12 and F(x, t) from 12.13 must be equal, we have:

_ 1 V2L X 1
F= 1+F+Czt' = 1+V2 2 12.16
V" ct

Thus:

\/1+Vé —%}Jlﬁg +% =lor JK-VK =1 12.17

Exactly equal to 1.10.

Rewriting the equations 12.6, 12.7, 12.8 and 12.9 according to the function of v, v’ and F we have:

X=X 12.6

t=Ft 12.7

With the respective inverted corrected equations:

X=X-Vi 12.8
_t 12.9

= .
We have the equations 12.6, 12.7, 12.8 and 12.9 finals replacing F by the corresponding formulae:
X=X 12.6

el V2 X
t=t 1+F+W 12.7

With the respective inverted final equations:

X=Xx-v1 12.8

.Y
t=t 1+F &t 12.9

That are exactly the equations of the table |

B V
As V== and V=B then the relations between v and v’ are V=— or VV=V.F 12.18

F F

We will transform F (12.12) function of the elements V', x’, and t’ for F (12.13) function of the elements v, x
and t, replacing in 12.12 the equations 12.8, 12.9 and 12.18:

F:\/ 1Y X 1+(VC|2:)2 +2‘/§2Xt_ vY

¢ ct

VPP xP AR [ xP VPP
F \/1+c2 Ta ¢ ‘\/1+ & @
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22
F2 :1_|_2V_XF2_E :F2+VF _2\/XF2 _1—F= 1

ct C? ¢ A V2 UX
e~

That is exactly the equation 12.13.

We will transform F (12.13) function of the elements v, x, and t for F (12.12) function of the elements v’, X’
and t, replacing in 12.13 the equations 12.6, 12.7 and 12.18:

_1 1 . .

VX 1(VY (X4t J VE X A2
\/1+c2 & \/1+CZ(F) - %ZW) YepTar or
B 1 o1 V2 I an _\/W
Fiﬁfvz__NXZDF( d¢2<%FJ_LDF_1+F+F?

C2F2 ¢t F?

That is exactly the equation 12.12.

We have to calculate the total diferential of F(x’, t') (12.12):

_OF g, F
dF_adﬂgdt
as:
X JKct a JKctt '
we have:
1V, 1 VX
P ke ™ e
where applying 1.18 we find:
1V 1V odk g
dF N dx \/R'szﬁdt_o 12.20
From where we conclude that F function of x’ and t’ is a constant.
We have to calculate the total diferential of F(x, t) (12.13):
F o F
dF_&dx+Edt
as:
d_1v daF_lvx 221
T3 e AN XA T3 Y :
&gttt an | Jett
we havei 1
- Y - Y l(
dF—EﬁdX E@Ttdt 12.22
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where applying 1.13 we find:

dE= 1v 1 v dx
E’f KéEfdt

From Where we conclude that F function of x and t is a constant.

Xit=0

The equations 1.13 and 1.18 represent to the observers O and O’ the principle of constancy of the light
speed valid from infinitely small to the infinitely big and mean that in the Undulating Relativity the space and
time are measure simultaneously. They shouldn’t be interpreted with a dependency between space and
time.

The time has its own interpretation that can be understood if we analyze to a determined observer the
emission of two rays of light from the instant t=zero. If we add the times we get, for each ray of light, we will
get a result without any use for the physics.

If in the instant t = t' = zero, the observer O’ emits two rays of light, one alongside the axis x and the other
alongside the axis y, after the interval of time t’, the rays hit for the observer O’, simultaneously, the points A,
and A, to the distance ct’ from the origin, although for the observer O, the points won’t be hit simultaneously.
For both rays of lights be simultaneous to both observers, they must hit the points that have the same radius
in relation to the axis x and that provide the same time for both observers (t; =t and t'; = t’,), which means
that only one ray of light is necessary to check the time between the referentials.
According to § 1, both referentials of the observers O and O’ are inertial, thus the light spreads in a straight
line according to what is demanded by the fundamental axiom of the Undulating Relativity 8 12, because of
this, the difference in velocities v and v’ is due to only a difference in time between the referentials.
y=X=X 1.2 v=XX 1.4

t t
We can also relate na inertial referential for which the light spread in a straight line according to what is
demanded by the fundamental axiom of the Undulating Relativity, with an accelerated moving referential for
which the light spread in a curve line, considering that in this case the difference v and v’ isn’t due to only the
difference of time between the referentials.

According to § 1, if the observer O at the instant t = t' = zero, emits a ray of light from the origin of its
referential, after an interval of time t;, the ray of light hits the point A; with coordinates (X1, Y1, Z1, t;) to the
distance ct, of the origin of the observer O, then we have:

_t | _ %
t=t 1+c2 &,

After hitting the point A; the ray of light still spread in the same direction and in the same way, after an
interval of time t,, the ray of light hits the point A, with coordinates (X; + X, Y1 + V2, 21 + 25, t; + t,) to the
distance ct, to the point A, then we have:

X _% V2 _ A% V2% V2 _ VU
o s ZUEJ“cZ @, \/1+c2 @, e
and with this we get:
_ V _ V 2\/u><
t,=t, /1+C2 Zczitz =, /1+
V V 2\/u V2 _ M +X%)
t 4=t /1+C2 Zczitl +t, /1+C2 = X:(t1+t2b/l+ X:(t1+t2)\/1+02 ~Ch1t)

The geometry of space and time in the Undulating Relativity is summarized in the figure below that can be
expanded to A, points and several observers.
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t t t
0, 0=0 0, X
t
t=t1 = zErO
In the figure the angles have a relation \|I=(|5—(1) and are equal to the following segments:

0, to Q=0 is equaito O=0 t0 0, (Q(—)01=V§=\}f1)
O, to O; is equal to O'; to O’, (Q (—Dz=\l(t1 +t2)=V(fl4-f2)—)\/E=\/f2=Q (—)Q+Ol(—02)

And are parallel to the following segments:

11
!

O, to A, is parallel to O, to A;

O’, to A, is parallel to O’; to A;
X=X'is parallel to X EX'1

The cosine of the angles of inclination (I) and (I)' to the rays for the observers O and O’ according to 2.3 and
2.4 are:

UXx \l
_ UV UX_ C $= cog-v/c
[14V2 _UX 1LV _ VU Ve _N
+C2 2 2 \/1+ cos|>
C0ﬂ5=%wC 12.23
. serd>
And with this we have: Serd) 12.24
X+ b cosh+/c
U= —UX_ C C :‘/COSI‘;
V2 Z\IUX C VZ  2/UX V2N~
\/1+ \/l+02+ 2 \/1+02+ o Cosp

COSI)-CDL\/K,@_V/C 12.25
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And with this we have SeHF% 12.26

The cosine of the angle [/ with intersection of rays equal to:

1-YX 1 VUX 1-Veog) 1+ cosh

— C _
Co3y 7K K K N 12.27

And with this we have: SGWZ%%Z%% 12.28

The invariance of the CO3) shows the harmony of all adopted hypotheses for space and time in the
Undulating Relativity.

The CO3Y is equal to the Jacobians of the transformations for the space and time of the picture |, where the
radicals

JK= {1+V? —%tx and VK = /1_|_\/? +% are considered variables and are derived.

Q - VX 1_VUX
COWZJ—@(I—dX’y’Z’"fL é 85?- 8 —1 Czt—l c’ 8.8
ad o adxyzt) |- oo L (1 V2 _vx] VKK
JK TTVKUT ¢ ct
Y VX 1,VUX
cogy=J =K' — axyzt) _ é ga 8 . 8.8
XK' AXY.ZE) Vit gg 1 (1+\/_2+M JK VK
VK TTVKT ¢ et

813 Richard C. Tolman

The 84 Transformations of the Momenta of Undulating Relativity was developed based on the experience
conducted by Lewis and Tolman, according to the reference [3]. Where the collision of two spheres
preserving the principle of conservation of energy and the principle of conservation of momenta, shows that
the mass is a function of the velocity according to:

m=__

where m) is the mass of the sphere when in resting position and U=|q =+/UU the module of its speed.

Analyzing the collision between two identical spheres when in relative resting position, that for the observer
O’ are named S’; and S’, are moving along the axis x’ in the contrary way with the following velocities before
the collision:

Table 1

Esphere S'; Esphere S’,

U= | Ux=V

uy,=zerc | Uy,=zerc

uz,=zerc | Uz,=zerc

For the observer O the same spheres are named S; and S, and have the velocities
(U)i, ux,uy=uz =ZerQbefore the collision calculated according to the table 2 as follows:
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The velocity UX of the sphere S, is equals to:

UuXietv — _ oy A
V2 AUX Vi AV 7
\/1+02+c21 \/1+c2+c2 \/1+c2

Ux=

The transformation from v’ to v according to 1.20 from Table 2 is:

\/1+V ‘le \/1+\’¥ 2V Jlfaﬂ'

That applied in UX supplies:

14+3/°
c?
The velocity UX% of the sphere S; is equal to:

_\/1 yzx inuxz _\/ _VN NV
+V 14V

=Z€erc

CZ

Table 2
Sphere S; Sphere S,
_ AN _
ux=—2L_- =2
UX =zerc
/1+?2 %
uy; =zerc Uy, =zerc
Uz =zerc Uz =zerc

For the observers O and O’ the two spheres have the same mass when in relative resting position. And for
the observer O’ the two spheres collide with velocities of equal module and opposite direction because of

this the momenta ([jlz[jz) null themselves during the collision, forming for a brief time (Af) only one
body of mass

m :m1+m2-

According to the principle of conservation of momenta for the observer O we will have to impose that the
momenta before the collision are equal to the momenta after the collision, thus:

MUX -HTBUY% =(M -+, W

Where for the observer O, w is the arbitrary velocity that supposedly for a brief time (At) will also see the

masses united (m:ml+rr§) moving. As the masses ] have different velocities and the masses vary

according to their own velocities, this equation cannot be simplified algebraically, having this variation of
masses:

To the left side of the equal sign in the equation we have:

u=ux=2v
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m_m_ m _ M _m>2
g

U=UX =Z€rc
”‘”Jmiﬁ s nma h g "
c c’

To the right side of the equal sign in the equation we have:

u=wW
m _ m

m= m _
R

m=_1 - M _ M
oy

Applying in the equation of conservation of momenta we have:

MU -HTHUG =M} T ME=MWAHTLW

—2_A+m.0= M g M
N
From where we have:

v _2mw . v _ w

=gl g

eV

As WV for the observer O the masses united (m:m -HTQ) wouldn’t move momentarily alongside to the

observer O’ which is conceivable if we consider that the instants ﬂ?ﬁﬂ' are different where supposedly the
masses would be in a resting position from the point of view of each observer and that the mass acting with
velocity 2v is bigger than the mass in resting position.

If we operate with these variables in line we would have:
MUY -HTRUX (M -HM) =mWAMW

I A= = e

11| A
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Z _ 2mw

v

11| 4° C
(1+C2 1 2| (1,30
CZ

2mV _2mw
2
FET

2V _ 2mw
e

From where we conclude that W=\ which must be equal to the previous value of w, that is:

1
CZ
A relation between v and v’ that is obtained from Table 2 when UX =2V that corresponds for the observer O
to the velocity acting over the sphere in resting position.

814 Velocities compaosition

Reference — Millennium Relativity

URL: http://www.mrelativity.net/MBriefs/VComp Sci Estab Way.htm

Let’s write the transformations of Hendrik A. Lorentz for space and time in the Special Theory of Relativity:

Y= XVt y= X+t
1_V? | 141a 1_V2 | 143a
c c?
y=y 14.1b =y 14.3b
7=z 14.1c 7=7 14.3c
t—gzx t‘+\é§(
t= y 142 | t= y 14.4
e e

From them we obtain the equations of velocity transformation:

_ UX=V — UX+v
ux 1_\(/:l2J)< 14.5a u 1. +%R 14.6a
C
’ u 1—\é2 uy 1—\é2
y_l_wx 14.5b uy:—M 14.6b
C? C?
uz/1-V uz 1=V
_ C? _ c
uz—l——VClZJX 14.5¢ UZ—Wg}_ 14.6c

Let’s consider that in relation to the observer O’ an object moves with velocity:

UX=1510knis(=05Q).
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And that the velocity of the observer O’ in relation to the observer O is:
v=1510kn s(=05Q).

The velocity UX of the object in relation to the observer O must be calculated by the formula 14.6a:

Ux+v _ 1510+1510 _
u =2410km s(=08).
1+v(l:J2 1+],5.1O3.15.103 S=08)

(3010F
Where we use C:3,01(ykm5(=1,003)

Considering that the object has moved during one second in relation to the observer O (tZ:LOCB) we can
then with 14.2 calculate the time passed to the observer O’:

X o Lo({1—15-103-2’4-1@]
t=% t(l 2 )_ (3010 — 060 _¢_0693.

= —
\/1_\@ \/1_\/2 L (1510 VOS5
¢ ¢ 3010
To the observer O the observer O’ is away the distance d given by the formula:

d=vt=1510.100=15.1CKm.

To the observer O’ the observer O is away the distance d’ given by the formula:

~1510:-080 _
d=vt-151C 7e=103923Ckn

To the distance of the object (do, dlo) in relation to the observers O and O’ is given by the formulae:

do=Ux24.10.100=24.1Ck.

do=u Xf=151@.%=103923@kn.

To the observer O the distance between the object and the observer O’ is given by the formula:
N=0,—d=2410-1510=0901Ckn.

To the observer O the velocity of the object in relation to the observer O’ is given by:

AT RILO! S(=0,30
Relating the times t and t’ using the formula =t 1—V@ is only possible and exclusively when UX=V and

UX=Zerwhat isn't the case above, to make it possible to understand this we write the equations 14.2 and
14.4 in the formula below:

t(l—‘c’cosb) t_t‘(l+‘écos|)')

t=— >~ 14.2

14.4
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Where COSI)Z%t and COSI;%.

The equations above can be written as:
t=f(t)e t=F'(tP) 147

In each referential of the observers O and O’ the light propagation creates a sphere with radius Cl and Ct
that intercept each other forming a circumference that propagates with velocity c. The radius Cl and Ct
and the positive way of the axis X and X form the angles (1) and (1)' constant between the referentials. If for
the same pair of referentials te angles were variable the time would be alleatory and would become useless
for the Physics. In the equation fo(t,(I)) we have t' identical function of t and (1) if we have in it (I)
constant and t’ varies according to t we get the common relation between the times t and t' between two
referentials, however if we have t constant and t' varies according to (I) we will have for each value of (I)

one value of t’ and t between two different referentials, and this analysis is also valid for t=f'(t' ,(I)')

Dividing 14.5a by c we have:

Ux_V Vv
UA_V COSI)_*
UX_c ¢ - C
SA=Y L 0= 14.8
C 1-VUX 1-Ycosh
c? C
_ X _UX X _UuX
Where CO$H=2:="2 and COSH=2 =2
ere ct ¢ Y c ¢C

Isolating the velocity we have:

v_ (cosh—cosp) o V= ux—U X 149
c (1—cospcosp) 1_UXUX -

c?

From where we conclude that we must have angles (I) and (I)l constant so that we have the same velocity
between the referentials.

This demand of constant angles between the referentials must solve the controversies of Herbert Dingle.
815 Invariance

The transformations to the space and time of table I, group 1.2 plus 1.7, in the matrix form is written like this:

JIEELE
¥ 001 O %/ 15.1
t | |000VK |t

That written in the form below represents the same coordinate transformations:

qIasE
7 /001 O %’ 15.2
ct||000 VK |ct
We call as:
X X; (155_)8—\6/C X X;
X=X ¥ igg , =05 001 0 | X=x!= g = i((g 15.3
ct| o4 000 VK ct| |
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That are the functions X=X (Xj )=X" (Xl,X2 ,X3,C)<1):)<i (X, Y Z,Ct) 15.4

That in the symbolic form is written:

X=ct. X or in the indexed form X' :ﬁyﬂxj :>Xi:0(1-ij 155
J:

Where we use Einstein’s sum convention.

The transformations to the space and time of table I, group 1.4 plus 1.8, in the matrix form is written:

1384 I3
%/ 001 O ¥ 15.6
t||000VK |t

That written in the form below represents the same coordinate transformations:

el
¥ 001 0 (7 15.7
ct] [000VK |ct
That we call as:
X X; 100V/c X X;
x=x = Y12 X | a=aig= 859 § | =Y H XS 158
ct] |cx 000/K ct| |cxt
That are the functions XK =XK (X'I )ZXk(xl,X'Z,X'?’,CX‘l)ZXk (X,Y,Z',Cf) 15.9
That in the symbolic form is written:
X=0! X or in the indexed form XX =§ik,><' =4 =dk|)<| 15.10
, VP Xk _ |l VE At _
Being \/T(—1/1+@ S (L), JK= 1+?+W (1.8) and VKK =1 (1.10).
The transformation matrices &= (j and CZ'ZOCIH have the properties:
b0l [
aa%,am—ﬁo«,a,u 001 0 001 0 FooioH=d 15.11
= 000 VK |000VK | |0001
L9840 | 8988 Llaeeal,,
datwfjidlkzngidik 0010|0010 Hoo10F!=4 15.12
= -v/c00VK |V/c00VK | [0001

Where O :aji is the transposed matrix of &= 0j and o ZCZ'"( is the transpose matrix of 0!'=C¥'k| and

5 is the Kronecker’s delta.

oo 1
da:dklaijzgdquj 001 0 |001 O 8(1)(1)8 =1 =0k 15.13
. 000V/K {000 VK | [0001
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0
0
0

0
0
1
0VK |-

X %
dtd=d|kaji=gd|k04<i 00 98 == 15.14
B V/cO 0

c

Where a't:a'"( is the transposed matrix of OKIZCZ'H and O =aji is the transposed matrix of (X=(;

and 5 is the Kronecker’s delta.

Observation: the matrices Oj; and O€k|are inverse of one another but are not orthogonal, that is: G ¢0£'k|
and Gjj -'/—'d"(.

i . i
The partial derivatives %J— of the total differential d)t'%d)d of the coordinate components that
correlate according to Xi=X (Xj), where in the transformation matrix (X=0@ the radical JKis
considered constant and equal to:

Table 10, partial derivatives of the coordinate components:

i 1 1 1 1 a('l_ \Y;
K _K? _| K? K? _q | K? K2
a0 a0 lae = ae ~% o
K _oK3_ | o3 K _n |3 _q | X
o a0~ %120 o0l ae ! §=°
a(i_a(4_ 4 4 4 4
S50 a0 | 50|30 [as=K

The total differential of the coordinates in the matrix form is equal to:

dxt | |100—v/c| d¥
dx

0
0

3 001 15.15

cd¥ | [{000 VK |cdy

That we call as:
dxt . 1100-v/c dx

dx=dii o 0% | A=A = {010 01 g 4 | dX 15.16
dx ad 1001 0 dx
cdx 000 VK cdx

Then we have dX=Adx=dX ZX/Ai dx =dxi %}—d)@ 15.17

J:

_OX

The partial derivatives %(k]— of the total differential OX —&]—d){l of the coordinate components that

correlate according to XKZXK(XlI ) where in the transformation matrix a':a'm the radical \/K is
considered constant and equal to:
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Table 11 partial derivatives of the coordinate components:

1 [ ad 1 1 ot _V
EERIEEERIEE

2 2 2 2 2

3 3 3 3 3
[0 Folgr 2

ox* Xt _

R B S REES
The total differential of the coordinates in the matrix form is equal to:
d§ 108\//0 dxt
g)@ 001 O 3§§ 15.18
cd¥ | [000VK | cdi¢
That we call as:

d)& 100v/c d)t;
A=l _A}‘_—r 359 § | dx=ax'< 9% 15.19

cd>€ OOOJ_ cdi
Then we have: OX=AdX=0h =2;Ard>{' bt =G 15.20
The Jacobians of the transformations 15.15 and 15.18 are:

100-v/
a0 dprxexaxe) 070 01

J= 50 dxlxz 2 X4) 2(88(])_ \/(I)_J—«/R 15.21

15.22

X zj(xlx2 x3x4 JOlO 0

X 6\)(1 X2 X3 X 001 O

100V/
OOOJ_

Where \/_K—lfl g %u_i( 2.5), VK= %z %ﬁ (2.6) and VKJ/K =1 (1.23).

The matrices of theI transformation A and A also have the properties 15.11, 15.12, 15.13 and 15.14 of the
matrices & and (.

From the function ¢=AXk)=¢=¢I_Xk(X'I )J where the coordinates correlate in the form Xk=Xk(X'|) we

have %—%{—&q— described as:
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8p _0p o _opon, 0 dx, 0 oc , 0 o
T oKk T OK OXL T oxe KT Toxe ot T ke Xt
Op _0p v _0p da, b e, 0 o, b o
X2 0Kk X2 O X2 Toxe oXz Toxe ok T ewa oxz
0 09 oxx 09 on 09 o 0 06 , O o
GOk X3 O X3 Toxe X3 TO@ OK3 T OxE OX3
op _0p v _0p da, b e, 0 o, O o
XF 0Kk OXF O OXE Toxe X T ke K% T oxa okE

That in the matrix form and without presenting the function ¢ becomes:

oy A’ gl gl |
&1 B a<4
Jac g e gae g

| 6 6 & 0|1 o6 0 0|t SN S

X axIaZaldxd [ ladadadad | od g o god g ae g
1t X? 3 5><4
o_ vV at_god_god 1(1+v_2+vuxlj
A A S TN i |

Where replacing the items below:

a<4 _V
Xt CZK?
5)(1:\}:L
X UK
A _ 1 (V2 Vuxt) a4 (VZ vuk]
A e (s

Observation: this last relation shows that the time varies in an equal form between the referentials.

Weget: 7 _
ot ol o ol
=1 0K X _
a<21 a<§ a<§ @<4 JK
1@ o X% 4o o
|l o 0 0 0 O 0 0 o |t ax2a<3a<4
X IaZad x? | oo ac ol @(3:0 &3:0&3_1&2)

i K2 3 ax
6)(4 v ot gt gt l(lv2 vui)
o G S KU 2 &2

That is the group 8.1 plus 8.3 of the table 9, differential operators, in the matrix form.

From the function ¢5=¢(X" ):¢:ﬂ_)(" (Xj )J where the coordinates correlate in the form X'i =XIi (Xj) we

have %ﬁr%ﬁ_%} described as:
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O _Of oxi _ 0 pxa 8¢5 X2 Oﬁ K3 8¢ K4
KT O XL Ok Tox2 O TaxE aa T oxE aa
&) _0f o _0p o, 0f oz, 0 s, O o
XX KK X2 K2 X3 X2 K4 o
0f _Of Xi _0f ox 8¢55x2+8¢55x3+8¢@(4
KT 0@ XKL O ToX2 O TaKE O6 T oxE o6
OF _0p oxi _0p axr, O X2, 0f &3, Of o
X XTOKE ™ KT RS OX2 OKA O3 oK% K4 oA
That in the matrix form and without presenting the function ¢ becomes:
_@(—1:1 &gy,
1 2 3
-&:O gz_lgzzogézo
%aaaa}aaaaa@ a2 o ad
o 1odoCodad [Tavlan2 a3 ke gfzo &3:()%33—1&(3:0

Where replacing the items below:

K _ a<4$a<4d)a<4 1 (1,2 vuij
Ll VK e JKU ¢? ¢?

Rt
o TIK
KA v
o cJK c?
R _ 1(1+ Vuk)_a¢ _ 1 (1,2 vule
o JK ) J_k A
Observation: this last relation shows that the time varies in an equal form between the referentials.
We get: - B
&Ky axlﬂaﬂﬂ)axl v
a<12 a«’é a<4 JK
JK g K _16)< :OGX 0
o aaaa} 0 6 0 0 lad a2 ac ol
x adaCacad ] Lot akZ a3 x4 @f’:o 6><3:oa<3_16><3d)
x4 _v x4 a<4i)a<4 1(1\/2 vuxlj
et ¢ VKU c

That is the group 8.2 plus 8.4 from the table 9, differential operators in the matrix form.

Applying 8.5 in 8.3 and in 8.4 we simplify these equations in the following way:
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Table 9B, differential operators with the equations 8.3 and 8.4 simplified:

0 _0.,V 0 0_0 VN0
OXT O 'C2o¢¢ |81 | O oXT c2oXe 8.2
0 _0 0_0
N2 o2 811 | k2 X2 8.2.1
0 _0 0_0
o3 oa 8.12 | 0@ X3 8.2.2
—0 _ g —0 —0_ —0
K s | e Ka e
O 0 —zerc|as | OUX 0 —zerc | as
The table 9B, in the matrix form becomes:
_ 1 1000
aaa%Haaa% 0100 15.93
1 2 3 4 1 A2 A3 '
L X K2 X3 oK K OXE oK Ca(‘l‘_—v/cOON/R
(0 0 0 -0 aaa@'itl)(fgg
1A A3 }:i: 1Aa2a30a41 0010 15.24
Lot o o cox &(&(&(C@(__v/coom

The squared matrices of the transformations above are transposed of the matrices A and A’.

Invariance of the Total Differential

In the observer O referential the total differential of a function ﬂXk) is equal to:

dx
0P sk — 0P 431, OD 2, OB 133, OP Op Op op O | dX
d;ﬁ(xk)zg([d%_ydﬁwdﬁwdﬁwdx“ A I DE gd)fg 15.25

Where the coordinates correlate with the ones from the observer O’ according to XK =Xk (X" ) replacing the
transformations 15.24 and 15.18 and without presenting the function ¢ we have:

o000 ol dibg|dd
dg= kd*:I: 1Aa2a3034 0 01 0 |00
& LA ~//c00VyK |00

0
(1) 8 dx’ 15.26
0

The multiplication of the middle matrices supplies:

c 1 00 V/c
0 10 0
0 01 O 15.27

_V/co01+2/dx

K Gl

Result that can be divided in two matrices:

1 00 V/c 0 00 Vv/c

0 10 0 100011 5 g0 0

0 01 O 8(1)(138 0 00 0 15.28
AN di

V/c001+2/9X" | 1000

/dxt
205 0001 _Wcooczd)t“
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That applied to the total differential supplies:

0 00 V/c 1
1000 0 00 0 dX2
d¢_a¢ﬁd){(:|: a1 a2 a3 a4 8%98 0 00_0O gks 15.29
X
LX) 5551 160028 || e

00
0 0 0 0 0 00 0O X2 |-V 0 quiy O gy N AX O qya
[5xlax25x3ca<4 _y/cooax | X, oW aa g griaatt
cedx®

Where applying 8.5 we have:

0 -1 X0 ke A X0 dyezer

_CZBR c2dxsola C2 x4 ol 4
Then we have:
0 00 V/c 1
0 00 0 |9
[8 0 0 0 0 00 0 |dX¥ =Zer( 15.30
1 2 3 4 3 | .
oK K K™ o) w/coo'ﬁ}z’g)ﬁ &

With this result we have in 15.29 the invariance of the total differential:

O 0 0 0 (1)988 33@ o
d¢_6xkd){(:i:a<la<2@<3ca<4 8810 dx® o = dX' =dg 15.31

In the observer O’ referential the total differential of a function d)(") is equal to:

dxd
0P (wi _OP 491, OP 492, O 143, O 4:[ i%% dx?
dg e -0 ox = a3 e G+ L4 . D, o 15.32

Where the coordinates correlate with the ones from the observer O referential according to Xi=Xi (Xj),
replacing the transformations 15.23 and 15.15 and without presenting the function ¢ we have:

op 00001608 38Ye o
dg= d*‘{@m@@@@& 0010 {001 O |dy 1533
v/c00VK |000 VK |cd¥

The multiplication of the middle matrices supplies:

100 0 T100-v/c| | 98 ~4¢
0100 (010 0 || 349 § e
0 01 0 |001 0 D .
v/c00/K]000 VK | |v/c001-5

Result that can be divided in two matrices:
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100 —~/c 1000 0 00 —~/c
010 0 ||3999]1 000 0
001 0 919041 000 o0
v/c001-29X | 15001 | | v/coo—2vdX
¥ 0¥

| 10001 | 3 88 ¢ || ax
dp=L x40 9 0 0 ||0100LI 000 0 || 9%
o Locacded 0001 | vicoo-29X || o

Executing the operations of the second term we have:

0 00 —~/c

000 0 |d%
06 0 0 de |_v 0 O AR 3
[a(la@a@ 0 00 g(/)dk d¥ ‘czaéd’HaéM c2d><‘5x4d)é

Where applying 8.5 we have:

V 8 d)4 _1 d)4 8 ):]X;_A/dx (3 d)ezzerc

C2 x4 C2 O ox4 c2dx ox4
Then we have:
088 s
00001000 0 |4%|-
[&1&2&%&4 v/cOO—Z"dk dd)fé -
cax |©

With this result we have in 15.36 the invariance of the total differential:

1000]| d¥
dp-Sax+ 0.0 0 0, 10870] B =i -dp

X o a¢ ac o | 9919 gd>§ X

Invariance of the Wave Equation

The wave equation to the observer O is equal to:

a
4o
1000 | 0
vipl OF _of , oF | of 1 aﬁ{a 0 0 0 (010032 |g
Cocf dxfdef def cdxf ladaratad i) o
170
Lo
Where applying 15.24 and the transposed from 15.24 we have: B i
0
4 A1
100 0 F0007200=Y
010 0 =57
veploF 100 0 055710 (0100|010 § X
CAeP Azl |y 00101001 0 | <,
axf < 00K [ 0001685, i | a7
L]
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The multiplication of the three middle matrices supplies:

100 0 ropool100=Y

0100 10100010 6 |1 020 8
~VooJK |000-2|901 O 11 _avux
C 000VK TOO 1?

= =

o0 § 11398811 000 §
0010 0 15.42
00 u

o

% 15.43
i .
%3

Executing the operations of the second term we have:

0 00

Y
[aaaa 888§ 3LV O 0 Voo Ut P
12 A3 A4S
wacacax | 690 0. o,
c & | o

Executing the operations we have:

A 0 0 _ANUXr @
CCAKIK4 €2 €2 gx4F

Where applying 8.5 we have:

(X 010 UKL e

2l KeE ¢ 2 Ry

Then we have:

1 0
v
200 0100 § |
2
|:5)<1@<2(3)<3C(3X4 0 00 &é =Zer 15.44
ﬂOO—Z\}U‘xl aﬁ
C ¢ | 0
LoX?
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With this result we have in 15.43 the invariance of the wave equation:

0
i
1 of 58685988_% 1 _op?
Vg3 122703 g7 | 001 0 =Vig—5
CaxtF Loz a3 X 000_1_% x4 F
LoX? |
The wave equation to the observer O’ is equal to:
2
1000 0
e L] b el 100 % o
' Z
bed 5( 1)2 5(*2)2 5(><3)2 X'f LaCaEAC 6051 | 3
Where applying 15.23 and the transposed from 15.23 we have: _ i
el
— a(l
1000 r1pgp7100 ¥ | ©
-1 00 1200210010 (8208 010 § | 3¢
X4F LoX Ok o Vv 001 0 |9
ax*f 00K 0001|635 ¢ | 3¢
ot

\
100 0 F100071200 ¥ | [100 ¢
959 8 19199010 § 1920 8
L
c%0 000K | | ¥00-1+24% 2

CZ

\ \
100 g | [1000 8
010 0100 o
001 0 (70010 000 0
V00142737 ‘_éoo_cy_

0

v || od

, 1000 0008 0

sagndases| Wl 8 ||
1 A2 A3

e e lacacacax]| 9819 Voo Uk || 3¢

Voo X

oo’
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Executing the operations of the second term we have:
10|

1

000 ¥ |
000 01000 6 |a¢l_vo o.vo o, au @
aacadmd [000 0 |0 T@adad '2adad ¢ ¢ axf

VanVUX | 33
X00 2 _@é
ot

Executing the operations we have:

NO 0 Aux @
2oL X4 2 2 6(x4)2

Where applying 8.5 we have:

A ke a(az)z et

Then we have:

10
v | &

000 ¥ |X
000 07000 8 3¢ |yer
KRoCoCH? 000 0 [0 |

VoolUX| 3@

c "¢ |0

ot

Then in 15.50 we have the invariance of the wave equation:

1000 |
EREEREN

1 A2 A3 4
°25(><4)2 KOO ] 95

%‘ SO SIS

Invariance of the equations 8.5 of linear propagation

Replacing 2.4, 8.2, 8.4B in 8.5 we have:

O Ut 0 _ 0 1 (UX14V)
St =G Rt e R gy =zerc

Executing the operations we have:

1

That simplified supplies the invariance of the equation 8.5:

O UX 0 _ 0 UX! 0 _sarc
Keor ot e olr
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Replacing 2.3, 8.1, 8.3B in 8.5 we have:

0 UXt 9 _0,V.D, (UX‘_V)/Ka_zerc

o A s X e JK
Executing the operations we have:

1

That simplified supplies the invariance of the equation 8.5:

1

The table 4 in a matrix from becomes:

The table 6 in a matrix form becomes:

x| [100-v/c
352107076 %
0 Jx

RE 01 0

"3 | [000 VK | cp
(3¢ | [100v/c] Ixe
¢ [L|010 O | Jx2
3@ 1001 0 fyys3
¢o | [000VK | ¢g

Invariance of the Continuity Equation

The continuity equation to the observer O is equal to:

i)'y
&)&Jxla]xzab@é}o 0 0 0 [
Y=ot 538 0 30 e e
Where replacing 15.24 and 15.56 we have:
» 000 o180 |00 3
VIt e anarang | 0 01 0 {001 0 | Fys [F2er
~J/c00/K |000VK | “¢g
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The product of the transformation matrices is given in 15.27 and 15.28 with this:

0 00 \//c .
1000 0 00 J'xX:
VJ+@0 51 52 83 54 0100 0 00 0 NG
0010 '3
o Laacacax” | 8819 w/cooa’g}l JX

Executing the operations of the second term we have:

0 00 V/C [y
[aaa o1 888 § [meLvaw
X

Vg, AUXt
&(1&(2 3@(4 _V/cooWU'X Jcé?» il Cza<4 p+ P

X ae

Where replacing JXI=0UX? and 8.5 we have:

10 1 1
P Gl B oo

Then we have:

\I/C J'Xl

0 00 '
[555 0| 0000 |3 |=zerc
1322 /)3 4 3
XX X3 X '/coozvuxl IX

With this result we have in 15.59 the invariance of the continuity equation:

@106 0 0 0 c1)(1)88 ﬂ:ﬁ @
VJ"‘F 6X16)<2a<3®<4 0010 J|X3 :V\T‘"W
0001 | cs

The continuity equation to the observer O’ is equal to:

JXt
'l AT Y2 AT 'S 1
VJ‘+§(0 %(’i +6Jx a]X éb{é)(“éxiéxi ﬂ;gi =76r(
o
Where replacing 15.23 and 15.55 we have:
2 000 010108018783
VJ+ KoK OBHE 00101001 O ﬂ)@ =Zer(
v/c00VK |000 VK | cp

0 00 —v/c

1000 N

SV ML
X Lok oo 0001 v/coO—Z’?U*
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Executing the operations of the second term we have:

0 00 —~/c IR
[ﬁﬁﬁi 888 8 Jﬁ—‘ v A% \@p Arukdo
1 1 2
&&&WV,COOa/uk%chzaéa( Z o

Where replacing J)Q‘:,d,l)‘l and 8.5 we have:

VUX 5,04,( ux o )&Z\IUX P _zerc

C2 x4 C2 ox4 c2 ox4
Then we have:
8 [y
[ﬁﬁﬁi 000 0 |9% |=zer
1A2 A3 —
HRATOEDX 000 AUK| &,

With this result we have in 15.64 the invariance of the continuity equation:

»' oo o 0 %(1)88 jlﬁ @
VJ+@( &(1@(2@(3&3(4 0010 ng ZV.J-FW
0001 cp

Invariance of the line differential element:

That to the observer O is written this way:

100 Q F19907100 ¥ [ax
dsf Jawdiedxedr] 901 0 (8199 |og0 § | X
v e 19954 (001 o | d¥
¢ 00vK 10001557 i | cdx’

v

100 Q 10007100 ¥ | [100 ¢

301 0 9198 |oa0 § 11880 ¢
001 0

¢ 00VK {000 ggoyic | | Y oo4-2/0E

Result that can be divided in two matrices:

V V

100 XL 1000 000 8
010 01001, 000

Jor  as | 18053V o aue

1= dX = A dX

EOO 1 c2dx? OO Xt
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That applied in the line differential element supplies:

000 Y
1000 ¢ d¥!
(@ axaxaxede| 8198 14888 § || 4%
00041 Vv OO—Z\/dkl Cd5(4

c2dx?
Executing the operations of the second term we have:

000 Y
¢ [ae]
laxedxzdxcas | 899 § Lt +cd5<4( o2/ dX e |

dx® i
\, 00—2\, d)tl CCU(4 ¢ Cz d)z

2 dx?
Then we have:

dxt

g;% =ZEr(

=A'dX | cdxt
¢z dx*

oonI<

[ dxecds

ol<oo o
o OO O
o OO O

With this result we have in 15.71 the invariance of the line differential element:

10007 di
(ds? [dx1d>z2d>t3cdx4[8(1)(1) O}OWJ st P-+{ax2 P+{ox® P{calx F=(dsy
00

0

To the observer O’ the line differential element is written this way:

00

dx
(d8p={axe P+{cx2 f+{axe {cdse P= ot dxe d)t%dk“]{oé(l) 8‘ gﬁi
C

Where replacing 15.15 and the transposed from 15.15 we have:

1000 rMpoo]1002Y [ gy
010 Q

(dsp—fawaxaéeax| 001 0 |3599 (010 § | 9X
YooK |000-1{ 595 R | caix

The multiplication of the three central matrices supplies:

ov||100

1000 1000 ]_0

8598 (9199 010 6 11849 8
S s ad g,
< 00 /000K | | /00-1+ 2/

s
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Result that can be divided in two matrices:

-V -V
100 E 1000 000 g
010 0100 (| 000 15.77
S8 S RS0 '
V00 e
EOO 1+Czd)<‘ COOCde‘*

000 <

1000 ¢ ||
dsp={axdeciecds]| 8198 14 339 § || 9% 15.78
0001 —Vooz\/_dﬂ( cdx
C~cldxX

000 ¥ |
I dx dedﬂedﬁﬁdﬁ#!ﬁﬁed%j zer
~Voo2vdX |cd
L€~ cfdX
Then we have: B
000 2 ye
[iceocat] §98 8 | 9 -zer 1579
:VOOZVd_)& cdx
C c2d¥ ]

With this result we have in 15.78 the invariance of the line differential element:

000

(dsy [d)&d)éd)@cd%[mo 8}3‘ }(d)&)?{d%)z%%)z—(cd%)? (d? 15.80
00 dx

In 87 as a consequence of 5.3 we had the invariance of Eu=Ed where now applying 7.3.1, 7.3.2, 7.4.1,

7.4.2 and the velocity transformation formulae from table 2 we have new relations between E> and EX
distinct from 7.3 and 7.4 and with them we rewrite the table 7 in the form below:
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Table 7B

Ex— Ex/K E EXVK
i]__l | 7.38 1+ 7.4B
u ux
Elyl: Ey\/-K 7.3.1 Ey: E'y'\/’K‘ 7.4.1
E'zZ=Ez/K 732 | E=EZVK 7.4.2
B'X'=B» 75 Bx=B'X’ 7.6
1 1 V [} 1 '
B y:Bng EZ 7.5.1 By:B y_gE z 7.6.1
151 V 151 V' [} 1
B'z =Bz—@ Ey .5, | Bz=B Z+02 E'y 2 6.2
UX~- . ux'
By:_@ E:z 7.9 BYy'= ?‘ EZ 7.10
ux u x .
BZZ@ Ey 701 | BZ= — 2 E'y 7.10.1
vV V
(1_u_x11+0'>_<‘):1

With the tables 7B and 9B we can have the invariance of all Maxwell's equations.

Invariance of the Gauss’ Law for the electrical field:

cEX &y Ez’_p
X _BT _82'_

Where applying the tables 6, 7B and 9B we have:

(a v 0 EXK 6Ey/K Ez/K_p/K
Xea Eviun &

Where simplifying and replacing 8.5 we have:

{ ) Ex .EyEzp
M (Ev/ux) W a g

That reordered supplies:
as
YEz p

B((l ux} EX A

That simplified supplies the invariance of the Gauss’ Law for the electrical field.

Invariance of the Gauss’ Law for the magnetic field:

BX ,BY B
X g ta T

Where applying the tables 7B and 9B we have:
o, Vo
(& " a)Bﬁa(chz Ez &(B E;}o
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That reordered supplies:

Bx, BY, Bz v( z By, B ):O
Xy acey ata

Where the term in parenthesis is the Faraday-Henry’'s Law (8.19) that is equal to zero from where we have
the invariance of the Gauss’ Law for the magnetic field.

Invariance of the Faraday-Henry’s Law:

fy cEX__B?Z 8.18
X o & |

Where applying the tables 7B and 9B we have:

(S d FyeGity— R4z ey
That simplified and multiplied by (1-V/UX) we have:
aEs(l_ V)EX BTy )

X\ ux) oy F

Where executing the products and replacing 7.9.1 we have:

cEy cEx_ Bz, v(EY, uxaEy)
X § amaxea

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Faraday-Henry’s Law.

Invariance of the Faraday-Henry’s Law:

EZ_EY_ BX 20
Where applymg the tables 7B and 9B we have:
EY /R=vKBX

_@E X3

That simplified supplies the invariance of the Faraday-Henry’s Law.

Invariance of the Faraday-Henry’s Law:

cEX EZ_ BY 8.22
T XX -

Where applying the tables 7B and 9B we have:

0 EXK (0, ,vO 0
6’2(1—v7u>‘<) & CZ&)EZ/K “/KH(BVFCZ EZ)

That simplified and muttiplied by (:V/UX) we have:

%X% : ux}é/z% k ux} ?{1 ux)'c\g% 5 )

That simplifying and making the operations we have:
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CEX cEz__BY v(dEz BY
aZ X & WX a

Where applying 7.9 we have:

CEX cEz_ By v{cEz ux&Ez)
T X a maxea

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Faraday-Henry’s Law.

Invariance of the Ampere-Maxwell’s Law:

_&___@_:%‘]'Z'—Fgo '%_ﬁ'_ 8.24

Where applying the tables 6, 7B and 9B we have:

(g c\ggIBWC—\QEZ}@ pJzres K ERK

That simplifying and making the operations we have:

By Bx_ %Jz-h%/,b‘fz 1vecEz 1 2/uEz vEz vaBy 1vecEz
X oy docacecacxacda eaa

Where simplifying and applying 7.9 we have:

By Bx Ez 1 uEz vEZ v(-UxXEZ
X & S o a @ o CZ(CZ a)

That reorganized supplies

By Bx Bz v(uxcEz cEz
x gy MG cz(cfof WJ

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law:

Invariance of the Ampere-Maxwell’s Law:

%Z—' %! =14J X+50%%)£ 8.26

Where applying the tables 6, 7B and 9B we have:

S[BryEy g By Eduemhan K G Eut

Making the operations we have:

BzBY, V2 NUREX 1
yoa (W & %Czp)*go%(l e ) & V)

Replacing in the first parenthesis the Gauss’ Law and multiplying by (1 lYX) we have:
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Bz By_ CEX, v( Bz BY_ Vv CEX \ﬂ(laEx 1v2 CEX 1 2VUXEX
@ MR R %‘]X}cz X olxx /oea e a

Where replacing .JXZ,CUX, 7.9.1, 7.9 and 8.5 we have:
Bz BY_ - .
o a e E gy ¢ a e aceld a

That simplified supplies:

Bz B
WZ——&y:,LbJXirgo to e

CEX, v (UXCEY, UXEz vV EX, V2 (—1$xj | 1V2EX 1 VuxEX
e 2 a

Replacing in the first parenthesis the Gauss’ Law we have:

Bz BY CEX V EX VEX 1 2VUXEX

o My ex ex o a
That reorganized makes:

Bz By CEX 2 CEX, UXCEX
I a My @(ﬁ+@ﬁ)

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law:

Invariance of the Ampere-Maxwell’s Law:

Where applying the tables 6, 7B and 9B we have:
Bx(o,Vvo Vv 0
B &+EEIB}§ Eya:;bera)%\/Ka EwK

Making the operations we have:

Bx Bz cE
_&_W:%JWEO%WLCZ Cad o ad

Where simplifying and applying 7.9.1 we have:

BX Bz_ CEy 12uxEy vcEy, v (uxazy)

1vecEy 1 2vuxky va’Ey+v Bz 1v2cEy

c2a c2cz a

T & VT G A o & e a
That reorganized makes:

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law:
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Invariance of the Gauss’ Law for the electrical field without electrical charge:

EX,EY ,EZ _er,
Xty Ta

Where applying the tables 7B and 9B we have:

(6 v 0 EXK &EWK Ez/K
X" CZH}(l—v/ux) 3

8.30

=Z€rc

Where simplifying and replacing 8.5 we have:

0,[-10 Ex ,ckEy A=
L&W(Uﬁ) U oy higzerc

That reorganized makes:

b{l uxj EX _W EZ_zerc

That simplified supplies the Gauss’ Law for the electrical field without electrical charge.

Invariance of the Ampere-Maxwell’s Law without electrical charge:

Yo e

Where applying the tables 7B and 9B we have:

(5 C‘ggXchz Ez}wﬁ%m OEZ/K
Making the operations we have:

6ByéB a”Ez+1v2cEz 12uxXEz vEz vaBY 1\vecEz
_@ haooa o a X 2 a o a

Where simplifying and applying 7.9 we have:

By BX cEz 1 2vuxEz v Ez v(—uxaEz)
_@_‘90“’? T ad oX aA\Q a

That reorganized makes:

By Bx_.. ,, Ez v(ux&Ez a’Ez)
X o Mg eloa &

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law without electrical charge:

Invariance of the Ampere-Maxwell’s Law without electrical charge:

T, :
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Where applying the tables 7B and 9B we have:

5;(8 E;}&(Bw Ez}gﬁ%ma EXK

Making the operations we have:

Bz BY._ v(a‘Ey (l+f_2\/u>?]a”5x 1
yoa ey a ¢ ¢ )a vy

Replacing in the first parenthesis the Gauss’ Law without electrical charge and multiplying by (1—V/ UX) we
have:

Bz By_ >(GBZ By vaEX\/Z(la”Ex 1v2 GEX_ 1 VUXEX

N a _‘90“’7 U X XX ) eea e a a

Where replacing 7.9, 7.9.1 and 8.5 we have:

Bz BY_.  EX v)(uxaEeruxaEz}v CEX VZ( AEX), 12 EX 1 AUXEEX

J a Mgy ca/ecxeca/tcea ¢ e a

That simplified supplies:

Bz By . FEX v(a'Ey v CEX_1 2VUXEX
g aothaely a/ox e a

Replacing in the first parenthesis the Gauss’ Law without electrical charge we have:

Bz BY__ EX VEX vAEX 1AUxXEx
Y aMaocxex e a

That reorganized makes:

Bz By CEX A CEX_UXEX
T @ e CZ(W cz*ar)

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law without electrical charge:

Invariance of the Ampere-Maxwell’s Law without electrical charge:

Y BT 2

Where applying the tables 6, 7B and 9B we have:

o.vo P
B2 C‘QHXB E@:M)JK EWK

Making the operations we have:

BX Bz aEy 1v2cEy 1 2vuxky . vaEy+vaBz 1v2cky
a X HhFecca ce aex ca cea

Where simplifying and applying 7.9.1 we have:
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T X M F e a ox elea

That reorganized makes:

BX Bz CEy V(uxac—y YJ
a X M F el a

Bx Bz ., EY 1VuxEy vEy v (uxaEy)

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’'s Law without electrical charge:

815 Invariance (continuation)
A function f(@):f(kr—vvt) 2.19
Where the phase is equal to H:(k I’—Wt) 15.81

In order to represent an undulating movement that goes on in one arbitrary direction must comply with the
wave equation and because of this we have:

k 24y?+72) | (O) kP >f(@ >0
Fh_(x H; - )J agg) (X2+y +22\ 89(2) k? 8«9(2) Zerc 15.82

That doesn’t meet with the wave equation because the two last elements get nule but the first one doesn’t.
In order to overcome this problem we reformulate the phase (9 of the function in the following way.

A unitary vector such as

N=CosA +cosf +CoyK 15.83
where cogﬁ——— cossx—r St cosB: 15.84
has the module equal to N=|M=+vNN Z\/CO§ ¢+CO§ 0H—CO§,B=1. 15.85
Making the product

N.R=Cogi+Cog§+COFK J\Xi-+Hyj+ZK FCOgK-+COBY+COFE . o= 15.86
we have r:n.R:cos¢<+c050y+cos& that applied to the phase 7, supplies a new phase
D=(kr-wt)=(knR—wt)=(kcogk-+kcosy-+kcogz —wt) 15.87

with the same meaning of the previous phase M

Replacing r:nR:cos;é(+cow+cos& e kZVEV in the phase 7, multiplied by —1 we also get another

phase in the form

®=(—1Xkr—\/vt):(\/\/t—kﬁ{m(t—g)J:[\A(t—CO%JrCO?y +C°3&)J 1588

with the same meaning of the previous phase (—1}92(1)

Thus we can write a new function as:
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f(q)):f{w(t_cogmco?ywoﬁn i

That replaced in the wave equation with the director cosine considered constant supplies:

ﬂ@ﬁ co$ ml@_ co$ +ﬂ@ﬁ cos - azf D)W @ =Zerc 15.90

that simplified meets the wave equation.

The positive result of the phase @ in the wave equation is an exclusive consequence of the director cosines
being constant in the partial derivatives showing that the wave equation demands the propagation to have
one steady direction in the space (plane wave).

For the observer O a source located in the origin of its referential produces in a random point located at the
distance I'ZCt——‘\/XZ—i-yZ-FZ2 of the origin, an electrical field E described by:

E=EX+Ey+EXK 15.91
Where the components are described as:

Ex=E.f(D

Ey=E,,.f(® 15.92
Ez=E,.f(®)

That applied in E supplies:

E=E f(@OF +E,f (D) +E, f (DK =|EJ+E,oj +E, [{(D)=E, f(D). 15.93
with module equal to EZ\/ (Exo)z +(Ey0)2 4—(50)2 f (CD):>E=EO f (CD) 15.94

Being E,=E J+E,J+EK 15.95
The maximum amplitude vector Constant with the components E,o, Eyo, Ezo 15.96

And module ED =\/(EXO)2 +(Ey0\f +(Eo)2 15.97

Being f(CD) a function with the phase @ equal t015.87 or 15.88.

Deriving the component E, in relation to x and t we have:

285 ar(cb)ap _g dl®jakewy_p 6f(CD)kx (DK
o o0 &D 5)( o o &D ct 15.98
Exoa‘(q)) &D a:a(%)) Akt EXOA&E)(—V@ 15.99

that applied in 8.5 supplies

CEX, X/tCEX zeroE, d (D)oD x/tExoéf(CD)_ _zero=E, d(D )(&D x/taCD) Jere

5><c2 éxc2
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EX0 %‘() %}%D) Zer0:>—+%:[aq)—zerc 15.100
demonst/ratmg that it is thée(kphase )CD tr}atg("nll:st corr)1p|y with SE /

oD  x/tdD —wt) | x/takr—wt X, X/t w
S g et zero:>a+c—( W)= zero:ﬁ(k cj zerc

W o
as k:E then E, complies with 8.5.

As the phase is the same for the components E, and E, then they also comply with 8.5.

As the phases for the observers O and O’ are equal (kl’—Wt)Z(k' T’—V\'ft') then the components of the
observer O’ also comply with 8.5.

QIL) X/t@(kr—vvt) aAKr-wt) X/t dKr-wt)_
i3 X & &

The components relatively to the observer O of the electrical field are transformed for the referential of the
observer O’ according to the tables 7, 7B and 8.

=Zerc 15.101

Applying in 8.5 a wave function written in the form:
Y=gl =g =c ok x—Wit)-+isinkx—wt)=cosD-+isind 15.102
where 1 =\/j.|..

Deriving we have:

%P =-ksenD+kicosD end %{’ =wsend—wicosh 15.103

A =ké?® and %P =—Wd® 15.104

That applied in 8.5 supplies:

&P+x/tc’;‘P
X 2 a

that is equal to:

zero=(—ksend+k icosD)+X?/—t (Wserd>—wicosD)=zerc

[k+ J3|n®+(k|— t)cosb zerc

o F +£c§ 5&{’ zero:>(ké®)+%§ (—wéq’)z Zerc

where we must have the coefficients equal to zero so that we get na identity, then:

—k+— —zero=k =W
c’t c&

XW

ki—2~ WV' =zero=>k==5
c’t
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(kéq’)+%/t (—wéq’): zero=k :é—;’t\'

Where applying W=Ckwe have:

XW_ XCK__ X
k=2 =5"=2=C
¢t ct 't
Then to meet with the equation 8.5 we must have a wave propagation along the axis x with the speed c.

If we apply W=UK and V:%(We have:

XW Vuk c?
ct ¢ v

A result also gotten from the Louis de Broglie’s wave equation.
816 Time and Frequency
Considering the Doppler effect as a law of physics.

We can define a clock as any device that produces a frequency of identical events in a series possible to be
enlisted and added in such a way that a random event n of a device will be identical to any event in the
series of events produced by a replica of this device when the events are compared in a relative resting
position.

The cyclical movement of a clock in a resting position according to the observer O referential sets the time in
this referential and the cyclical movement of the arms of a clock in a resting position according to the
observer O’ sets the time in this referential. The formulas of time transformation 1.7 and 1.8 relate the times
between the referentials in relative movement thus, relate movements in relative movement.

The relative movement between the inertial referentials produces the Doppler effect that proves that the
frequency varies with velocity and as the frequency can be interpreted as being the frequency of the cyclical
movement of the arms of a clock then the time varies in the same proportion that varies the frequency with
the relative movement that is, it is enough to replace the time t and t’ in the formulas 1.7 and 1.8 by the
frequencies y and y’ to get the formulas of frequency transformation, then:

t=tVK=y=y/K 1.7 becomes 2.22

t=t /K =y=yJ/K 1.8 becomes 2.22

The Galileo’s transformation of velocities U =U—V between two inertial referentials presents intrinsically
three defects that can be described this way:

a) The Galileo’s transformation of velocity to the axis x is UX=UX-V. In that one if we have UX=C then
U X=C—Vand if we have U X=C then UX=C+V. As both results are not simultaneously possible or else

we have UX=C or UXZC then the transformation doesn’t allow that a ray of light be simultaneously
observed by the observers O and O’ what shows the privilege of an observer in relation to the other because
each observer can only see the ray of light running in its own referential (intrinsic defect to the classic
analysis of the Sagnac’s effect).

b) It cannot also comply to Newton’s first law of inertia because a ray of light emitted parallel to the axis x
from the origin of the respective inertial referentials at the moment that the origins are coincident and at the
moment in which t =t = zero will have by the Galileo’s transformation the velocity ¢ of light altered by *Vto
the referentials, on the contrary of the inertial law that wouldn’t allow the existence of a variation in velocity
because there is no external action acting on the ray of light and because of this both observers should see
the ray of light with velocity c.

c) As it considers the time as a constant between the referentials it doesn’t produce the temporal variation
between the referentials in movement as it is required by the Doppler effect.

The principle of constancy of light velocity is nothing but a requirement of the Newton’s first law, the inertia
law.
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Newton’s first law, the inertia law, is introduced in Galileo’s transformation when the principle of constancy of
light velocity is applied in Galileo’s transformation providing the equation of tables 1 and 2 of the Undulating
Relativity that doesn’t have the three defects described.

The time and velocity equations of tables 1 and 2 can be written as:

2
£=t /1+§ —%’ cosp 17

V= _ Vzv 1.15
Vv
1+7_f cosp
2
t=t \/1+‘é_2 +%cos¢ 18
V= E v 5 1.20
1+? +?cos¢

The distance d between the referentials is equal to the product of velocity by time this way:

d=vt=Vt 1.9

It doesn’t depend on the propagation angle of the ray of light, being exclusively a function of velocity and
time, that is, the propagation angle of the ray of light, only alters between the inertial referential the

proportion between time and velocity, keeping the distance constant in each moment, to any propagation
angle.

The equations above in a function form are written as:

d=elvit)=€(V t) 1.9
t=f(vt.9) 1.7
V=0V, 1.15
t=f"(V .t ¢) 1.8

v=g(V,p) 1.20

Then we have that the distance is a function of two variables, the time a function of three variables and the
velocity a function of two variables.

From the definition of moment 4.1 and energy 4.6 we have:

E

P== 16.1

c?

The elevated to the power of two supplies:
U>_C° 2
—2—? p 16.2

Elevating to the power of two the energy formula we have:
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2

2
= % —E?— E2__m§c4
V2

Where applying 16.2 we have:

2 2
E2— U =gt =E? E2 C p?=mgc* =E=c,/p?+mpc? 48
From where we conclude that if the mass in resting position of a particle is null [T, =Z€IC the particle

energy is equal to E=C P. 16.3

That applied in 16.2 supplies:

u_c?

> W_ G 2
2 B2 Y 3(?7—?(:[3 p-=u=C 16.4

From where we conclude that the movement of a particle with a null mass in resting position M}, =Z€IC will
always be at the velocity of light U=C.

Applying in E=Cp the relations E=yh and C=y7\~ we have:

yh:yxp:>p=|}—2 and in the same way [52% 16.5

Equation that relates the moment of a particle with a null mass in resting position with its own way length.

Elevating to the power of two the formula of moment transformation (4.9) we have:

p= p— v:>|d2 P JFFV2 25vp>

Where applying E=C pand PX= pCO$|)=p%( we find:

g2= p2+@fv2 2= p= g/1+‘é2 ZC’ZUX:p_MZ 166

Where applying 16.5 results in:

p= p\/K 3% =%/K =1 =\/.—ﬂ|’< or inverted ﬂ=% 2.21
Where applying C=y/1 and C=yﬂ,I we have:
Y=WK orinverted Y=Y VK 2.22

In § 2 we have the equations 2.21 and 2.22 applying the principle of relativity to the wave phase.
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17 Transformation of H. Lorentz

For two observers in a relative movement, the equation that represents the principle of constancy of light
speed for a random point A is:

X2y Pz PP =32 4P+ P P 17.01

In this equation canceling the symmetric terms we have:
Nesta cancelando os termos simétricos obtemos:

xRt =52 P12 17.02

That we can write as:
(xct)xtct)=x—cxtcy 17.03

If in this equation we define the proportion factors 7] and U as:

(x*ct)=rx—ct) A o0
(4ct)=ux+ct) B |
where we must have 77.,1,l=l to comply 17.03.

The equations 17.04 where first gotten by Albert Einstein.

When a ray of light moves in the plane y'z’ to the observer O’ we have x’ = zero and x = vt and such
conditions applied to the equation 17.02 supplies:

0—At?2 =(V@2 —CP? ==t 1—‘—? 17.05

This result will also be supplied by the equations A and B of the group 17.04 under the same conditions:

0—07%/1—%22 =rlvtct) A

3 17.06

\ O+c 1—%22 =vtic) B

From those we have:

17.07

Where we have proven that 77.,Ll=1.

From the group 17.04 we have the Transformations of H. Lorentz:

x={TEH x+955i7)ct 17.08
et st
el s

Indexes equations Q’Eﬂﬂgﬂ and QEE:
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1+ 1Y 1+Y4H-Y
1-7 1+~ \/ 1-V 1+V 1_V2 1_V2
C C C C EZ }7

Sagnhac effect

17.12

17.13

17.14

When both observers’ origins are equal the time is zeroed (t = t' = zero) in both referentials and two rays of
light are emitted from the common origin, one in the positive direction (clockwise index c) of the axis x and x’
with a wave front A; and another in the negative direction (counter-clockwise index u) of the axis x and x’
with a wave front A,

The propagation conditions above applied to the Lorentz equations supply the tables A and B below:

Table A
Equation Clockwise ray (c) | Equation Counter-clockwise ray (u) | Sum of rays
Result Result
Condition Xc:ctc Condition X, :_CE
17.08 X'C:Iucz—c 17.08 X'u:_ncg
X = X =T XX = AR,
17.09 ct’c:ILCt: 17.09 ct’u:ncg Ct’c"'Ct'uzlucz—c‘f'nCtE
x.=ct, X =—Ct,
Table B
Equation Clockwise ray (c) Equation Counter-clockwise ray (u) | Sum of rays
Result Result
Condition X’C:c t’c Condition X'u:—cﬂu
17.10 xc:nct'c 17.10 }%:_wt%
X =T X = XX, =K AL,
17.11 ct-c:ncﬂc 17.11 ctﬂ:p@ﬂ_] ctg-{-ctﬂ:ncﬂc-hugﬂu
X-=Ct X, =Cl

We observe that the tables A and B are inverse one to another.

When we form the group of the sum equations of the two rays from tables A and B:

D=ctitct, =t et
D=cttct =ttt

A
B
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Where to the observer O’ D'IAJ <A is the distance between the front waves A, and A, and where to the
observer O D=A <A is the distance between the front waves A, and A..

In the equations 17.15 above, due to the isotropy of space and time and the front waves A, <>A. of the

two rays of light being the same for both observers, the sum of rays of light e times must be invariable
between the observers, which we can express by:

D=D=ct ct =ct+ct,=Dt=>t 17.16

This result that generates an equation of isotropy of space and time can be called as the conservation of
space and time principle.

The three hypothesis of propagation defined as follows will be applied in 17.15 and tested to prove the
conservation of space and time principle given by 17.16:

Hypothesis A:

If the space and time are isotropic and there is no movement with no privilege of one observer considered
over the other in an empty space then the propagation geometry of rays of light can be given by:

ict]5ct] and |t Tcty 17.17

This hypothesis applied to the equation A or B of the group 17.15 complies to the space and time
conservation principle given by 17.16.

The hypothesis 17.17 applied to the tables A and B results in:

t=uct, A
Quadrd e p— B .
QuadrdB CL=ITt, ¢ |
ct=uct, D

Hypothesis B:

If the space and time are isotropic but the observer O is in an absolute resting position in an empty space
then the geometry of propagation of the rays of light is given by:

lct]qct]Tct 17.19

That applied to the table A and B results in:

Ouadrad ct=uct A
ct=nct B
o tf C 17.20
QuadrdB CEICL
ct=uct, D
= A
Cte quct'u 17.21

ct=rPct. B

Summing A and B in 17.20 we have:

ct 4t = 2cr(’7+”):>w_[(’7+“):>w—

:>Zt’ 17.22

P

This result doesn’t comply with the conservation of space and time principle given by 17.16 and as D#Dit
results in a situation of four rays of light, two to each observer, and each ray of light with its respective
independent front wave from the others.

Hypothesis C:

If the space and time are isotropic but the observer O’ is in an absolute resting position in an empty space
then the propagation geometry of the rays of light is given:
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lctd=ct et 17.23

That applied to the tables A and B results in:

Quadrd CL=4Lt A
ct=nct, B
o c 17.24
QuadrdB cL=e
ct=uct D
ct=ret, A 17.25

ct,=trct, B

Summing C and D in 17.24 we have:

ct +ct, %ﬂ(nzﬂ):D D'("J”“):D

:}Zt:—z‘t' 17.26

=

This result doesn’t comply with the conservation of space and time principle exactly the same way as
hypothesis B given by 17.16 and as D#L DJ#L it results in a situation of four rays of light, two to each
observer and each ray of light with its respective independent front wave from the others.

Conclusion

The hypothesis A, B and C are completely compatible with the demand of isotropy of space and time as we
can conclude with the geometry of propagations.

The result of hypothesis A is contrary to the result of hypothesis B and C despite of the relative movement of
the observers not changing the front wave A, relatively to the front wave A, because the front waves have
independent movement one from the other and from the observers.

The hypothesis A applied in the transformations of H. Lorentz complies with the conservation of space and
time principle given by 17.16 showing the compatibility with the transformations of H. Lorentz with the
hypothesis A. The application of hypothesis B and C in the transformations of H. Lorentz supplies the space
and time deformations given by 17.22 and 17.26 because the transformations of H. Lorentz are not
compatible with the hypothesis B and C.

For us to obtain the Sagnac effect we must consider that the observer O’ is in an absolute resting position,
hypothesis C above and that the path of the rays of light be of

ct.=ct =ct=27R 17.27

For the observer O the Sagnac effect is given by the time difference between the clockwise ray of light and
the counter-clock ray of light At=t..—t, that can be obtained using 17.24 (C-D), 17.27 and 17.14:

At=t.—t,=t'(-1) Z'R{\/l—vz = 47ZRV 17.28
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89 The Sagnac Effect (continuation)

The moment the origins are the same the time is zeroed (t = t' = zero) at both sides of the referential and the
rays of light are emitted from the common origin, one in the positive way (clockwise index c) of the axis x and
x" with a wave front A. and the other one in the negative way (counter clockwise index u) of the axis x and x’
with wave front A,.

The projected ray of light in the positive way (clockwise index c) of the axis x and X’ is equationed by
X.=Ct. and X, =Ct. that applied to the Table | supplies:

ct. ctc(l— ):>cﬂ =ctK.@x7 ct=ct (1+—):>cz-c—cﬂ K. (1.8) 9.11
V.= Ve :>v’c=% (1.15) V.= Ve =V.= ;, (1.20) 9.12
1 Ve c 147
C
From those we deduct that the distance between the observers is given by:
d.=v.t.=v.t/, 9.13

Where we have:

(1—%11+%) =K.K'.=1 9.14

The ray of light project in the negative way (counter clockwise index u) of the axis x and x’ is equationed by
X, =Ct, and X'u=—Cﬂu: that applied to the Table | gives:

cﬂuzci;(l+%lj:>ctu=c§f<u (1.7) ct, cﬁj(l— ):>c; =ct K,@18 915

v, v, v,
v,= =V, =2 (1.15) v, = =V, = (1.20) 9.16
v, K v’ K’
1+-1 —Uu
C
From those we deduct that the distance between the observers is given by:
d,=v,t,=v',t, 9.17
Where we have:
\7 \
(1+F”Il—?u)=KUK’u =1 9.18

We must observe that at first there is no relationship between the equations 9.11 to 9.14 with the equations
9.15t0 9.18.

With the propagation conditions described we form the following Tables A and B:

Table A
. Clockwise ray of . Counter clockwise ray of .
Equation light (c) Equation light (u) Sum of the rays of light
Result Result
Condition | X.=Ct. Condition |X,=—Ct,
12 | X=CLK. 12 | X=CtK,
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X~ X=XK, X AX =X RAXK,
17 |Ct.=CtK, 17 |Ct,=CtK, cttct =ctK.+ctK,
x'.=ct, x ==t
Table B
Equation %ﬁflg\;ise ray o Equation ﬁ?gohlf{rztue)r clockwise ray of Sum of the rays of light
Result Result
Condition X'c:Cﬁc Condition X'U:—Cffu
14 | X.=Ct K, 14 | X, =Ct K,
X=X K, 3, =X, Ky X+, =X K ALK
18 |CL=Ct.K. 18 |CL=C,K), ctrcl=Ct.KACt,Ky
X-=Ct X,=—Ct

We observe that for the rays of light with the same direction the Tables A and B are inverse from each other.
Forming the equations group of the sum of the rays of light of the Tables A and B:

{D’zcﬂc+ct§l=cthc+c§Ku A

D=ct+ct=ct.K4ct K, B 19

Where for the observer O’ UIAU <A, is the distance between the wave fronts A, and A, and where for
the observer O D=A4,, <>A. is the distance between the wave fronts A, and A..

In the equations above 9.19 due to the isotropy of the space and time and the wave fronts Au(—)AC of the

rays of light being the same for both observers, the sumo of the rays of light and of times must be invariable
between the observers, which is expressed by:

D=D=ct +ct =ct+ct,= =Dt 9.20

This result that equations the isotropy of space and time can be called as the space and time conservation
principle.

The three hypothesis of propagations defined next will be applied in 9.19 and tested to prove the compliance
of the conservation of space and time principle given by 9.20. With these hypotheses we create a bond
between the equations 9.11 to 9.14 with the equations 9.15 to 9.18.

Hypothesis A:

If the space and time are isotropic and there is movement with any privilege of any observer over each other
in the empty space then the propagation geometry of the rays of light is equationed by:

{ctg =ct =t.=t'=v.=V,=>K.=K|, A .

ct=ct.=t,=t =v,=v.=K,=K. B

With those we deduct that the distance between the observers is given by:
d.=a, =V .=V =V, =V, T, 9.22

Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of
light are compensated in the referentials.
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Hypothesis B:

If the space and time are isotropic but the observer O is in an absolute resting position in the empty space
then the propagation geometry of the rays of light is equationed by:

ct=ct,=ct A
V.=V,=V B 9.23
vt.=vt,=vt C

With those we deduct that the distance between the observers is given by:

d.=d,=vt=v'_t. =Vt 9.24

Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of
light are compensated in the referentials.

Hypothesis C:

If the space and time are isotropic but the observer O is in an absolute resting position in the empty space
then the propagation geometry of the rays of light is equationed by:

ct.=ct,=ct A
v =v =V B 9.25
v .t =V t =vt C

With those we deduct that the distance between the observers is given by:

d=d,=vt=vt.=vt, 0.26

Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of
light are compensated in the referentials.

In order to obtain the Sagnac effect we consider that the observer O’ is in an absolute resting position,
hypothesis C above and that the rays of light course must be of 2

ct.=ct =ct=27R 9.27

Applying the hypothesis C in 9.11 and 9.15 we have:

t.=t_K.=t. :t'(l—kzcl) 9.28

t,=t!, K, =t, =t(1—%j 0.29

For the observer O the Sagnac effect is given by the time difference between course of the clockwise ray of
light and the counter clock ray of At=t..—t, that can be obtained making (9.28 — 9.29) and applying 9.27

making:

At=t_—t, =t(1+%j—t(l—%)— Z‘é't' —47;13‘/ 9.30

2Vt _2vt, _2vt,
C C C

propagation of the clockwise and counter clockwise rays of light in a circumference showing the coherence

of the hypothesis adopted by the Undulating Relativity.
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In 9.30 applying 9.12 and 9.16 we have the final result due to V. and V;:

2Vt _ARv_ARv. _ YRy, 0.1
c & oy Gtoy '

The classic formula of the Sagnac effect is given as:

At‘:tc—tlzé%f 9.32

A=t

From the propagation geometry we have:

A=2Vt 9.33
C
The classic times would be given by:
t=27—ZR 9.34
C
cVv
_2R 9.36
v
Applying 9.34, 9.35 and 9.36 in 9.33 we have:
At_2v27zR_47zRV 9.37
c c '
Atc_ZV,ZidQ _4Rv 038
clov) @—ov
AE}_ZV,Z?ZR\_ diRv 039

cletv) P4cv

The results 9.37, 9.38 and 9.39 are completely different from 9.32.

818 The Michelson & Morley experience
The traditional analysis that supplies the solution for the null result of this experience considers a device in a
resting position at the referential of the observer O’ that emits two rays of light, one horizontal in the x’
direction (clockwise index c) and another vertical in the direction y’. The horizontal ray of light (clockwise
index c) runs until a mirror placed in X’ = L at this point the ray of light reflects (counter clockwise index u)
and returns to the origin of the referential where x’ = zero. The vertical ray of light runs until a mirror placed in

y’ = L reflects and returns to the origin of the referential where y’ = zero.

In the traditional analysis according to the speed of light constancy principle for the observer O’ the rays of
light track is given by:

ct.=ct =L 18.01

For the observer O’ the sum of times of the track of both rays of light along the x’ axis is:

— _L L_2L
Zj:'x’ —t'c'i‘t'u—a E——C 18.02
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In the traditional analysis for the observer O’ the sum of times of the track of both rays of light along the y’
axis is:

it L T2
Zt’y,—t'++t'_—c =2 18.03

As we have fo' ZZt'yr=2—CL there is no interference fringe and it is applied the null result of the

Michelson & Morley experience.

In this traditional analysis the identical track of the clockwise and counter clockwise rays of light in the
equation 18.01 that originates the null result of the Michelson & Morley experience contradicts the Sagnac
effect that is exactly the time difference existing between the track of the clockwise and counter clockwise
rays of light.

Based on the Undulating Relativity we make a deeper analysis of the Michelson & Morley experience
obtaining a result that complies completely with the Sagnac effect.

Observing that the equation 18.01 corresponds to the hypothesis C of the paragraph §9.
Applying 18.01 in 9.19 we have:

{ch t +ct =ctK.+ctK,=D=I+L=ctK.+CctK, A

D=ct+ct,=ct.K +ct,K,=D=ct+ct,=LE ALK =I(K'+K,) B 16.04

From 18.04 A we have:
D=2I=c t‘c(l—%cjﬂ: Q(1+%1):>D':2L:ct'c—vctC +ct,+vt, 18.05

Where applying 9.26 we have:

D=2I=ct+ct, =)t =t.+t, :%L 18.06

In 18.04 B we have:

D=ct+ct, :ZKZH%)%-@—%)J 18.07

Where applying 9.25 B we have:
o7t 4 220
D:CQ'FCE— :th_tc_l_tu = 18.08

The equations 18.06 and 18.08 demonstrate that the Doppler effect in the clockwise and counter clockwise
rays of light compensate itself in the referential of the observer O resulting in:

Zﬁ'y=2t'x=2tx =2—CL 18.09

Because of this, according to the Undulating Relativity in the Michelson & Morley experience we can predict
that the clockwise ray of light has a different track from the counter clockwise ray of light according to the
formula 18.08 obtaining also the null result for the experience and matching then with the Sagnac effect. This
supposition cannot be made based on the Einstein’s Special Relativity because according to 17.26 we have:

DAL 18.10
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819 Regression of the perihelion of Mercury of 7,13”

Let us imagine the Sun located in the focus of an ellipse that coincides with the origin of a system of
coordinates (x,y,z) with no movement in relation to denominated fixed stars and that the planet Mercury is in
a movement governed by the force of gravitational attraction with the Sun describing an elliptic orbit in the
plan (x,y) according to the laws of Kepler and the formula of the Newton's gravitational attraction law:

F__Gll,\z/(!m’ f__(6571011111921@013’281@3)[1_;5f 19.01

The sub index "o0" indicating mass in relative rest to the observer.

To describe the movement we will use the known formulas:

r=r 19.02

L
WP=0: dtj{?}@ 19.04
o e T ity

The formula of the relativity force is given by:

e_d m,ulm,aij, udy,

o s J i ( uzjz@d TTK EZH }

In this the first term corresponds to the variation of the mass with the speed and the second as we will see
later in 19.22 corresponds to the variation of the energy with the time.

With this and the previous formulas we obtain:
P e d¢ drd¢ P
e m &) dg dt dtdt _tZ
2 V? 2 2
u dr d2r (dg g &% dg
[1 62) *{d{w dtj }” ({ dtclt r‘?)}@( "t ¢)
@\dr (dgP| Jdrder (dg drdg . 24| 1dr
i {[ @) de” )Hd:{a? dtj }r {ZdtdtHTj}? dt}(
= 19.08
weref?| [ @Y drds. ) [alcr (dg drdg . o2\ r dgl;
‘{(1 @ | “dtdt a8 ) |d{ a dtj B ({zdtdt+r7]@dt

19.07
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In this we have the transverse and radial component given by:

_ m W _dzr dg dn d?r d¢ drd¢ d2¢ 1dr
i llmZ/CZPZ{[l_?" de Ft) }{d{ﬁ? dt) }”d‘{ dtdt”—?}@dt}' 19.09
_, n _U2 dl’d d2¢ dit d?r dg dl’d¢ d2¢ r dg
i) {1 & |2t r‘?H {? dtj }” ({ dtdt+r7]}_c7dt}¢ 1910

As the gravitational force is central we should have to null the traverse component |-—;3=Z€r( so we have:

P drdg, &), Jdi dr_(d drdg &)\ r d
ran ﬂz,cz {[1‘ Idtd?rr?(p}r{{ d@ }”d‘{ dtdqf”_gj}@d?}‘z’zze“ 19.11

From where we have:

drdg, 4\ _rdrd drdg, (%) —1dn cPr d‘éT
2dtdtﬂrdtzj Czdtdf Zroltolt de) cdydé \dt

cElE

From the radial component E we have:

def ,drdg, rd2¢
E—, M |dr_ d¢) P dr+d dtdt " de )| 1drl o
"/ de \dt @t dr d¢j St |
k de\dt
That applying 19.12 we have:
, A d r drdg)
_, m | %j ), Jdr "dt\@dtdt)| 1drl,
E_(l—u24)577/02 [mz dt Eé+<dt { (dljJ C2dt>l‘ 19.14
] @ dt

That simplifying results in:

dr_ d¢)2
o m de \dt

F \/1_u2 - (dr) f 19.15
c T Adt

This equaled to Newton's gravitational force results in the relativistic gravitational force:

54
F- M dé \dt . ‘GM”lr _kA

7 U2 dr r2 r2 19.16
e Ll cz(dt)J
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As the gravitational force is central it should assist the theory of conservation of the energy (E) that is written
as:
E=E<+Ep = constant. 19.17

Where the kinetic energy (Ey) is given by:

E =mé&-mc?=mc? \/—z 19.18

Fe
And the potential energy (E;) gravitational by:
Epz_%z—_k 19.19
r r
Resulting in:
-1 I—(=Constant 19.20

E=m?
\/ﬂf

As the total energy (E) it is constant we should have:

%Itz ddl':; ddl':tp =Zerc 19.21
Then we have:
dCE_ mu 3(3:':] 19.22
1LY
c
dg_kdr
dt —I’?Ht 19.23
Resulting in:
dE dE ,d u du, kdr u du —kdr
dt d% dl% Ze“"‘:‘—Emuz dt edt muz T4t P2 dt 1024
S C)
This applied in the relativistic force 19.06 and equaled to the gravitational force 19.01 results in:
F— \/m)uza C]-Zrkz(;{ _kf 19.25
¢

In this substituting the previous variables we get:
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_m Jdr drd¢ d2 1 kdrfdr, );
F ¥ {[d? }H{ dtdt d? 2 dt dtr+r ¢ 19.26
¢
From this we obtain the radial component E equals to:
F=—5_ dr_ d¢) 1K(QFJZ=—_k 19.27
/ iF de \dt) | &rddt) 12 :
i

That easily becomes the relativistic gravitational force 19.16.

From 19.26 we obtain the traverse component I'—;S equals to:

m_(,drdg 4| lkdrdg_
= J uzk dtdt T dE ) @rdtdt 19.28
[+
From this last one we have:
drdg. .d’¢
Xt de_1 k dr[ »
rz(gl? mJ@_zdt [+ :

As the gravitational force is central it should also assist the theory of conservation of the angular moment
that is written as:

C=rxp=constant. 19.30

C=rxp=rx \/E?ézzzrfv \/1 lézz( dtr+r ¢ )—ﬁ 2d¢(rx¢)fﬁr2d¢k 19.31

E_ I d¢R_U( constant. 19.32

e

dC_d(Lk) (L)< L) Ly_zero:i—)_zerc 19.33

dt dt dt dt

Resulting in L that is constant.

A

k
In 19.33 we had HZZGI’( because the movement is in the plane (x,y).

t
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Deriving L we find:

dL d 2d¢11 mu_du.dg, m (ndrdg, 0%
dtdi ], rdthz u23dltjr dt Jluz”dtdt Hge 2o 19.34
| 52 (102)2 2

From that we have:

drdg, b
Xadt™ de) —u dul .
ot —

Equaling 19.12 originating from the theory of the central force with 19.29 originating from the theory of
conservation of the energy and 19.35 originating from the theory of conservation of the angular moment we
have:

drdg, ) —ldnf dPr d¢j
X dtat™ df—’j e dt W dul

rzc(dftb [1 (drj J m,chZdt olta2 19:99

From the last two equality we obtain 19.24 and from the two of the middle we obtain 19.16.

For solution of the differential equations we will use the same method used in the Newton's theory.

Let us assume VVZ% 19.37

The differential total of this is O aNdr:,de—z 19.38

From where we have dW _1dr dW _ldr 19.39
dg rZdg° dt rPdt

From the module of the angular moment we have %?:I'T%Z 1——07 19.40

From where we have dr L dl’ 19.41
dt mrdgV~

Where applying 19.39 we have g—::_ﬁl;g_;v 1——05 19.42

That derived supplies d—zg (:Ciﬁdd;dd{nlig;v 1- ] 19.43
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Where applying 19.40 and deriving we have:

N R AL

In this with 19.36 the radical derived is obtained this way:

e (T =
L e g (L ()

That applied in 19.44 supplies:

ST ) ()

Simplified results:

FS0efal o0

Let us find the second derived of the angle deriving 19.40:

S-Sl WW J

In this applying 19.42 and 19.45 and simplifying we have:

Applying in 19.04 the equations 19.40 and 19.42 and simplifying we have:

w—Té@—a@—% |

The equation of the relativistic gravitational force 19.16 remodeled is:

AL

In this applying the formulas above we have:

S A
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19.44

19.45

19.46

19.47

19.48

19.49

19.50

19.51

19.52



<,

L ({ @ awr w1 \/7 —de
mcr? dg nﬁr2 02 dF nir m, d¢ mrz
1k (4 WP dw dw I_2 1%k 1
el e | dg J_U’ Wﬁ*ﬁﬁ@( @ dﬂ

/ Wwdw L2 —k
nﬁr2 02d¢52 0 - o2 m,r2
dzw 1 m,k

dF T
i
dzw 1 mKk
Vi

A
[ Jl_gi rﬂ?} @

dw, 1™ 1@
dF 't 7 j

%l

[dzw 1) 1‘@
r d¢
m,i dt | |
P

2 2 kK91
[dquvj o nf&@%)

K

I ety

(dzw) 20w 1 K @Kdt){ ?JI@J

R
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[dzwjz+2d2w+ 1kl g
] (el

[dzwjz 20w, 1k 5(3;)2 K
el 3] ]
B
ae(g) ) ()
k3( dwf
[d2w]2+gd2w+%_ e c\dp) K
# 5] o]

In this we will consider constant the Newton's angular moment in the form:

20
L=r G 19.53

That it is really the known theoretical angular moment.

dwy 20w, 1_K K (dwf K
d#) rdF @ il mee\dg) nicrl

WY 0w, K kR (dwf K
a7 ) a2 _ﬁ@?(d_cﬁ) e

2 2
(dz""] 28 d_"‘ﬁ AW

aF) “dF dg
2 2
(%Vj +2%VW+ g—gj +(A+1W—B=Z€I’( 19.54
Where we have:

k2

AFITA?EZ_LZ 19.55

K2
B:W 19.56
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The equation 19.54 has as solution:

\N:(%)[l—gco@/l@&@)]:w—?l)[l—aco@)] 19.57

Where we consider gzg:zerc_

It is denominated in 19.57 QZ=].+A. 19.58

The equation 19.58 is function only of A demonstrating the intrinsic union between the variation of the mass
with the variation of the energy in the time, because both as already described, participate in the relativistic
force 19.06 in this relies the essential difference between the mass and the electric charge that is invariable
and indivisible in the electromagnetic theory.

From 19.57 we obtain the ray of a conical:

1l D o D
"W Tecob A T T-ecofl) 1950

Where & is the eccentricity and D the directory distance of the focus.

dw Qser))
4 D

2\
That derived results in d W—QZCO@) 19.61
d#- D

Deriving 19.57 we have d 19.60

Applying in 19.54 the variables we have:

d'w| ;od’ dw
[d¢ ] +2d¢va ] H{Arw—B=zerc

QACE;(¢Q)+2Q2Cg@][l—écdg@)}AQg?@{m{%ﬂz —B=zerc 19.62

QACC[))f (@)—FZQZZSZ@)_ZQZC([); (@)_,_A%ZZ_Achog (@)_,_(A_I_l{l_éc;)@)}z _B-7er¢
Q4co§( )Zcho@Q) 2cho§ acho§!¢Q) KF) A+1):o£¢Q A+1):o§( ) Bserc

(Q“ 2 A(3+A+1)%g¢§) X 2R 2 %25— A) B er 19.63

5D5D&D

In this applying in the first parenthesis QZ=1-|-A we have:

(@ -2F-AG+AHLHL+AF-2A1+A- AL+ AH-AHLHL AR -2-2A-A-R+Atl)=zerc
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In 19.63 applying in the second parenthesis Q2:1+A we have:

AF 2A 2 | \ATA) 2A 2 |0
D DD H DD

The rest of the equation 19.63 is therefore:
AQ +£—)'ArF ) B zerc
D &7

The data of the elliptic orbit of the planet Mercury is [1]:
Eccentricity of the orbit 6:O,ZOE

Larger semi-axis = a = 5,79.10"°m.

Smaller semi-axis b:a\/g :5,7 9]_(}0\/ 1—0,206 :5665&6(.BO$OT'|
D=all-£2 57910°(1-0206 5544295560000

all-¢2)_57910%1-0206 ).
DA 505 209145611690

The orbital period of the Earth (PT) and Mercury (PM) around the Sun in seconds are:

P1=316.10s.
PM=760.1Cs.

The number of turns that Mercury (m,) makes around the Sun (M) in one century is, therefore:

N=10 :égjg 41579

Theoretical angular moment of Mercury:

2
L2 :(rz %@ =G I\/(La(l—é2 )=6,671(T 1119813%7 91010(1—0,20@):7322 1293 7150

 GMMP_(GMP _6657101F19810°F »cc 0
mels Lt (3016Ff(732100)

B:(G M”b)z —(G M)z _(6’671011)2(1’981§0)2 :3’2510r22
mLt L [73216°f

Q=/1+A=/1+263108=100000001 Rz

Applying the numeric data with several decimal numbers to the rest of the equation 19.63 we have:

AQ (A+) . 26510%(1000000123F 26510841 . 2 20
> 2 (269146611690 +(554429550(;00)2 320107=69760

Result that we can consider null.
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We will obtain the relativistic angular moment of the rest of the equation 19.63 in this applying the variables
we have:

Ab? A+1 Brg—XGLly‘!DZ {1+ %Zl\l/_‘lz J i Ll+<%2|\é)2 J—(Glli‘{‘l)z =Z€erc 19.71
élE(GM)Z{H%XJH:‘CZLH%XJ—&# DA(GM P=zerc

esz(GM)quz(GM)?ﬁ%'\_[éLucamz M) D (GMY=zerc

M+ O e oM GMP—zerc

02L4+(1+52IG M)2L2+52£C¥E—0252D2(G M P=zer 19.72

L2_41+§Xem)zi J [(1+6‘ZXGI\/(L)2]2—4C{52(GCI\Z/‘DA—CZ§D2(GM)Z}
ox2

L2_41+,521c3M)?iJ(1+52)Z(GMZZZ4§(G|\4)"+4c452D2(G|v4)2

L2_41+52XGM)?¢J(1+2,52+6416§C/1;)u|é(e|\/4)4+4c452D2(G|v4)2

L2_4l+62XGM)2iJ(GW+2é(GWg(em)“#(cam)w‘a@(sw

L2_41+52)(GM)%J(GW+eA(Gzh§)“—262(GM)4+4c4§D2(GM)2

T T ) IC(ZGM)"”C452 DCMS 73001202 7m25°

19.73

This last equation has the exclusive property of relating the speed ¢ to the denominated relativistic angular
moment that is smaller than the theoretical angular moment 19.66.

The variation of the relativistic angular moment in relation to the theoretical angular moment is very small
and given by:

4_7,322129278]2(?0—7,3221293721]2(?0

. !
73221293 7725 =-13810° | 1074

72503090

That demonstrates the accuracy of the principle of constancy of the speed of the light.
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In reality, the equation 19.06 provides a secular retrocession perihelion of Mercury, which is given by in

Ap=2rA1Y {(—:5—1):272415 4-000000001R3=34610°rad 19.75

Converting for the second we have:

5
434610 .12@0360@0:_713 .

19.76

This retrocession, is not expected in Newtonian theory is due to relativistic variation of mass and energy and
is shrouded in total observed precession of 5599. "
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§§19 Advance of Mercury’s perihelion of 42.79”

If we write the equation for the gravitational relativity energy Er covering the terms for the kinetic energy, the
potential energy E, and the resting energy:

B, =m,C’ 1 ——1 HE,+mc :—mocz2 +E,. 19.77
1—22 -

Being the conservative the gravitational force its energy is constant. Assuming then that in 19.77 when the
radius tends to infinite, the speed and potential energy tends to zero, resulting then:

Ey :LC; +E, =m’ 19.78
-z

Writing the equation to the Newton’s gravitation energy Ey having the correspondent Newton’s terms to the
19.77:

5% _k
By = m°2 +moC2 =mc’ 19.79
mu’ - -k . . .
Where is the kinetic energy, ? the potential energy and mocz the resting energy or better saying

2

the inertial energy.

From this 19.79 we have:

mur k muw _k_ o & _Z5Mm, > LM

5 +moc2 =m . = === mro mr = - 19.80
Deriving 19.79 we have:

di,_ d{mu” k

ST +moczj—zer(

mOZudu kgf—Zer<

2 dt rdt

Ldu_ —k dr_—GlY dr
“ar mr’dt r* dt

L,du_—GlY dr

dt r* dt

du_—GM
U&——IQ 19.81
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Making the relativity energy 19.78 equal to the Newton’s energy 19.79 we have:

E, =E, 3% +Ep 2%112 —]—;+mocz 19.82
-
o2

me® B mu® GMm, mc
mol_xcli My M2 Mr I,

19.83

In that denominating the relativity potential ( () as:

=2
Mo

We have:

19.84

SHITL S L IV
2

- r

o
(pzlz2 o &

r l—u

19.85

1

> 2 19.86

We have:

W GM 2 A7
=1~ +c7 c2(1+ 202)

That simplified results in the Newton’s potential:

19.87

=% Mo o _122 ——GM

2 r r

Replacing 19.84 and the relativity potential 19.85 in the relativity energy 19.78:

2
E, = moC22 +m, %_GTM+C2_ ¢ _ 19.88

u u
1-% 1-%

We have the Newton’s energy 19.79:

_mu  GMm,
Bi==5 = +mC’
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Deriving the relativity potential 19.85 we have the relativity gravitational acceleration modulus exactly as in

the Newton’s theory:

Where we have:

dn 2 r

2
u G
EN = ——M +C that is constant, resulting then in:

by m, that is E > T
d 1_u2
I
u du

a=———— -
3
o
In this one applying 19.81 we have:

1 &M

(-2

The vector acceleration is given by 19.05:

a=| T —z(c—@z A+[Zifo—¢ ey b
de \d dtdt df
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The relativity gravitational acceleration modulus 19.89 is equal to the component of the vector radius (f)
thus we have:

| Pr d¢)2 -1 aM
a_|‘d€ at = = % = 19.90
11—
%)
Being null the transversal acceleration we have:
2 A |~
{2%%3—{+r% =zer« 19.91
drdg . Fp
That is equal to the derivative of the constant angular momentum L:IZ%: 19.92
dL_d( .dp|_, drdp, .d¢_
dt_dt(rz dt)_ dtdt+rz Jp —Zer 19.93

Rewriting some equations already described we have:

1
w__
r
ow -1
dw=§rdr:>dw=? dr

%z__lif or @:—1‘2@\7 and @7:__12[
dp £ap” dp  dp™ dt ~£adt

dr_dgdtdr_Ldr_-L.dw_dr_ dw
dt dtdgdt r*dg frzdgzﬁ dt Ld_¢

e L

From 19.90 we have:

[1_22 dr_ d_¢)2 _—GM
22 fdtt \dt r

In this one we 19.94 the speed of 19.80 and the angular momentum we have:

13 (zsm) 3 Pw 3)2 _ oM
el )| rar e TP

M 1Y Fw 1J_GM

1 + ==

d rA\df r
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(G -PE

dw_ BM dwl 41 BM 1 Mo
d¢F d¢2r r & I

dw d2w l 1 1

oF d¢2r r e
Fw w7

wWHw—AwW —B=ze 1«
aF d¢2
Fw cil2

W —AW +w—B=zer(
oF d¢2
Where we have:
14_3GW@ B—ﬁyé

c b

The solution to the differential equation 19.95 is:
= L —gcodgorg |=w= [l—gco §0)|.

Where we consider QZZGI’(

Then the radius is given by:

1

=io D e &
W 1—gcoéh) 1—ecof)

Where & is the eccentricity and D the focus distance to the directory.

dw QseIQ¢Q) , Fw_Q'cody)
Deriving 19.97 we have =
dg o D

Applying the derivatives in 19.95 we have:

Fw_, Fw
aF o

W AW +w—B=zer¢

19.95

19.96

19.97

19.98

19.99

cho@fQ) A@;co@@) [1 _eco )] D2[1_500@@)]2+6_1D[1—gco§¢9)]—]3=zer<

e e Y pa—

Cco é@)_A@ co é@)+A@ Coé@)gco@@)—

A 1
s 52DZ2$CO§¢Q) ffcoé(@) 5 6—Dgcoé¢Q)—B=zer<
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cobh) 20,2 ;) AOcosh) boosl)_A 1 g ey
O e
RSN Tt
coé(@)(@_l)poﬁ@)g_%% ;J Ll Boer

The coefficient of the squared co-cosine can be considered null because Qzl and D® is a very large
number:

%@(@2 —1):ze T 19.101

Resulting from the equation 19.100:

CO@Q)( +2 lj L+l Bjer 19.102

AeDeDA & AD A

Due to the unicity of the equation 19.102 we must have the only solution that makes it null simultaneously
the parenthesis and the rest of the equation, that is, we must have a unique solution for both the following
equations:

o ¢, 2 1 1 1 B
AR B
A @ @ A ST ToTAD A

These equations can be written as:

[a:b]:>l . G —2) 19.104

=zZer« 19.103

gl 1_aE
[a—c]:>A D= & 19.105

In these ones the common term a:i_é_D must have a single solution then we have:

1 2)\_&E
[b c]:>§(A @) = 19.106

With 19.96 and the theoretical momentum we have:

=] 19.107

=% B—pr I =eDGM

Eae
c? 2
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Itis applied in 19.105 and 19.106 resulting in:

la=d] 3}}“?1[) = 19.108

[b C]jg(i é)) —i 19.109

From 19.108 we have the mistake made in 19.105:

A:IA; 6% %:—(ﬁ%~zer< 19.110
1_ —1 =-1,80.10" ~zexr« 19.111

& 55.442.95560000

From 19.109 we have Q:

é(%_é) — =0 =1-= :>Q2 1—6%% 19.112

It is applied in 19.104 resulting in 19.110:
1 1 _1(1 2 1 111,
A 5_D_§(A &D) ~a 6D ( ](A gD)ji DA Dt

From 19.112 we have:

&M _ d667.10771,98.107)

= [1—F0 = [1— =(099999992059¢ 19113
RR R \/ (55.442.95560Q00(3.16F

That corresponds to the advance of Mercury’s perihelion in one century of:

D Mp=Ap.4157 9:(%2 —1).1.2 9600(00.4157 %4279 19114

Calculated in this way:

In one trigonometric turn we have 3686k6EF1L.29600 @ 'seconds.

The angle ¢ in seconds ran by the planet in one trigonometric turn is given by:

¢5Q=1.296OOQ)O:>¢—1'296QOOCUC.

If Q>1,0 (we have a regression. ¢<1 29600 (D C.
If Q<1,0 (we have an advance. ¢>l .29a00G60C
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The angular variation in seconds in one turn is given by:

A¢=1'296QOOCOO—1.296OOCOO: é—l .2960040C

If A¢<zer< we have a regression.

If A¢>Zer< we have an advance.

In one century we have 415,79 turns that supply a total angular variation of:

ZA(I):A(I)-41579= é—l .1.29600000.41 57 9=42,79"

If LA(]Kzer( we have a regression.

If LA])>zer< we have an advance.

820 Inertia

Imagine in an infinite universe totally empty, a point O' which is the beginning of the coordinates of
the observer O'. In the cases of the observer O’ being at rest or in uniform motion the law of inertia requires
that the spherical electromagnetic waves with speed c issued by a source located at point O' is always
observed by O', regardless of time, with spherical speed ¢ and therefore the uniform motion and rest are
indistinguishable from each other remain valid in both cases the law of inertia. To the observer O’ the
equations of electromagnetic theory describe the spread just like a spherical wave. The image of an object
located in O’ will always be centered on the object itself and a beam of light emitted from O" will always
remain straight and perpendicular to the spherical waves.

Imagine another point O what will be the beginning of the coordinates of the observer which has the
same properties as described for the inertial observer O'.

Obviously two imaginary points without any form of interaction between them remain individually and
together perfectly meeting the law of inertia even though there is a uniform motion between them only
detectable due to the presence of two observers who will be considered individually in rest, setting in motion
the other referential.

The intrinsic properties of these two observers are described by the equations of relativistic
transformations.

Note: the infinite universe is one in which any point can be considered the central point of this
universe.

(8 20 electronic translation)
820 Inertia (clarifications)

Imagine in a totally empty infinite universe a single point O. Due to the unigueness properties of O a
radius of light emitted from O must propagate with velocity c. If this ray propagates in a straight line, then O
is defined as the origin of an inertial frame because it is either at rest or in a uniform rectilinear motion.
However, in the hypothesis of propagation of the light ray being a curve the movement of O must be
interpreted as the origin of an accelerated frame. Therefore the propagation of a ray of light is sufficient to
demonstrate whether O is the origin of an inertial frame or accelerated frame.

Now imagine if in the universe described above for the inertial reference frame O there is another
inertial frame O' that does not have any kind of physical interaction with O. In the absence of any interaction
between O and O' the uniqueness properties are inviolable for both points and rays of light emitted from O
and O' have the same velocity c. It is impossible for the velocity of light emitted from O to be different from
the velocity of light emitted from O' because each reference exists as if the other did not exist. Being O and
O' the origin of inertial frames the propagation of light rays occurs in a straight line with velocity ¢ and the
relations between times t and t' of each frame are given by table I.
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§21 Advance of Mercury’s perihelion of 42.79” calculated with the Undulating Relativity
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Q:QH) The regression is a function of positive energy that governs the movement.
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Q:QH) The advance is a function of negative energy that governs the movement
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Energy Newtonian (Ey)
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§22 Spatial deformation

V&
t=ti+p=—L + L =L 1 =2

c—v c+v C (1_322}

2L

1:—205(1_1 ‘C/g— \/15 g —I=I l—g I>T

This is the spatial deformation.

The length L' at rest in the reference frame of the observer O' is greater than the length L that is moving with
velocity relative v on reference frame the observer O.

Now compute to the observer O' the distance A=Vt between O<>C:
]
d=vt‘=v2—£'

]
Thus we obtain the velocity v: d=V2—£ :>V=c—2g.

Now compute to the observer O the distance d=vt between O<>0:

d=vt=v(t;+t2):v2—cL(—jl_l %

Thus we obtain the velocity v: dZV%@ :>V=§—La(l—g).

The speed v is the same to both observers so we have:

Where applying the relation I=I /l—g we obtain:

cd_ cd [V — 4V

Where the distance d and d’ varies inversely with the distances L and L’.
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In general, we obtain (14.2, 14.4):

viux
c
v
&

>
+ | | + | + [ _ _ _ _ _ _
o — — — — [T = — i — L — —
) © © 1 © Il Il Il
7_n_u T T T T

d(1+
=

Ux=

_
T

v

ux

Ux=v

ux=cC

Ux=zer«
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§23 Space and Time Bend

Variables with line t/,v',x',y,7' etc ...They are used in §21.

Geometry of space and time in the plan Xy—)yJ_X.

y=1x)

st y=|ds=|varar
|ds=A(ct)

dse=cdt dy=ds=J/dr' dr'
P=x1+yj=C ﬂi+_| dsj P'=xT+y']
dr=dxi+dyj=cdti+d<j dr'=dxi+dy']

dr=T=Xg:a-Y gy
r r r

v=0L=dx;, QY 5ecdts 85y p=dr!_dX7,4¥ 3

dt dt~ dt’ dt ' d de—qrrde’
d
%zc d—%,/=g—‘§= C=vCo® v=vsen
dy dd
rqp=Qv_dt_dt _1ds Fy_ di@_l d (1ds\_1 &
dx &ifd{ c cdt d¥ dxdx) cdt\cdt/) &dt?
V= =1 v=v"]
—_dv_dc  av' ac_ Av_adV o
F=qr—qrae qr—2er ar-ar 72
ds =dr.dr=\dxi+dyj|dx+dyjHcdti+ds jlcdtitdsd2 +dy = dt?+ds’
ds=/dt’+ds” ds=J/dg—dt?

_ds_ |24[dSY —jzrm _dd_ [ dsY _—fi7—z
v=g¢€ "\ ar Ve ar\\ga) <
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KI{%—X[EL theoretical curve

J w3 348
Yy _ 'y _ _
tap=" (p—arct%x G dy) < (ds
ax) elar
ds_ dyY_|.,1(dd
ax\ 1:( &j = 1+?Ed—ﬂj
1 FS
c dt?
dp 1(ds 1
Ko db_dx_ o\ g dt’

c
ds ds \/1 1( [ é(gg F

dsg_dsdp_x_AP_ cdtdt” _ " dt

de - deds ds e 3
1(ds v’z)z
[”&(dﬁ” (l+c2
lvldV’ 1dv
pR=p'd=c_dt g dp_ Zdt
dS (1 V!Z)% dS (:H_V'Z)g
o &
d@_m)vdv_ nz;;’dx/3 — Kk gk g
1-% (1+V'2)2 ror
c Tz
v’
dE .y, oV Ar kg k-
qr L s=plar etV
(%)
c
dE _ ap_ k
i =F' :V’—m)czv’——?rv’
pPeme Pk 2 R=P_ k 1;

ds r ds mc r’
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§24 Variational Principle

E= mHe* —Kicontart 21.21

\/W r

\/Wmcz 1V m)c k+c:onls@'1rt

\/W‘(—m)cz \/W kJ_m)cz p;ag(ﬂ"z \/1_7\_5)_ rlrf\\jz

c?

L——rT'})C2 1- V kLagrangeana

mpv
i

—m.c2 _ V2K
pv-L=mc L=pv-myc=mc? |1 2T

L—r’ﬂ)C2 What is the initial energy of the particle of mass mo.

Variational Principle

t
AQé@szjL[X(t),X(t),tht _cét —UX This is the velocity component in x axis.
(]

t
88=8jL(x,>’<,t)it=zer( Variation of the action along the X axis.
t

Building the variable X=XAEY in the range t1<t<t, we have seen this when E—¥ZEIEEX=X and
where E£ZEI(we will have the conditions:

%Stzzer( TEt) ftzerc ity )=zer %‘:zerc Tl‘%r?

X=X+ET X=X+€N %é—n %:h %éxzzer( %—zer(

t t
Then we have a new function I(S)ZI(XX‘l‘ST]X-FET]tbt:IF(X',X',t)jt and where:
t f

ts ts
=761 a-X=X—X=X—F=L=|FX X t)Jdt=| L(x x t)dt
! .

it

ts tm
E£ZEN X AX—XAX L= X X )t | L{x x t)dt
i i
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So we hav IS):IF[X' t}:“thtp vides derived:

%?)ZJ Ca aéé@%dt=tfé‘§m“tfé‘§fﬂt=ze“
4% &%r?:’& i BRI
%) ndt+ T‘d” (TS nfezer
%?L]%mt{fc(%n}ﬁfggg
oG, ot oo

- ngt J’a(%: tj[’o? 4 &) oezer

%) ﬂ& di 6)7(' }rﬂt—zero:m;tzere—ﬁ d[(&.)_zer(

—7ErE-X=X—X= ALdfa L
£=zere- XXX =X—F=L =L a{&)—ze“
%__19' %‘) This is the X a mponent | =m,? /1_\_({; _l_Lr(

oo

g((—m)cz /1—\—C’§J:zer( (%(Lr():zer( Vﬁ/ %%‘2 +%r}[2+%%2 =[}1R+72

&(K —d{ a —ITbCz l—yzz—)J This is the X axis component
&(k) k@ r 1):k( 1) 118r__k1x__kx
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oo g e (2 Prdloe)
2

g((—nbcz \/f%;j—\/%[%(xzwzm)z 12x}—\/ﬁb\\;2 [\/x2+5)(/2+22J \/T)\);Z

d %X_”B(dxlw- 1V 1 V2 51 V22 _2vdy
di \/1 \2 (1 V2 }H Xd \/7 ﬂjﬁ{ﬁn/i X%( ) (TTﬂﬂ
d _MmX L m d><1v2 X (vdv)' ‘?m/*\/* X r/vdv)

di 2 [ (1. v2) dt 2\C2dt V2 2 2\C2dt
\/1—%2 (162_ 1V Jl 1 \/1V \/1V
_ dX [1_V2 |12
N e ()
_\2 _V _\2 V2\C 2 C
e (152_ 2 L J(l—%z)z
2 \. v
—k—gl_——grn; 2|:(1_%Z><+ alt%Xz:Ii X axis
(-8)

%

@g[@‘%@x e +[—)3K1 L +(—]3K1 s da

g r gy ks
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(1_—”2)?; (1 V2)><|+v%é[’ax2 +(1 ‘—’2)34+vd\t’—y2 j+(1 +v%é[’é< kJ K
ﬁg_@_g)(mﬁgkyc%%(ﬁﬁﬁ%ﬂ%@
@

A=K+ k= dt(sé +§§+ZIA<)%V{ v=Xi++yj+2k

(1 sz Kl Vz)%v V%ﬁ/%%’ﬁ S

2) [(1 Vz)%v V%\{g}—_kr = 21.19

RS

i,
824 Variational Principle Continuation
E;<=rrbc{/1+\—§ :LC; :|?<+con5arte 2121
e
_ V2 _ M\ hoV_ m& _k
B =mgc? 1+?>7 =T +m /1 Z =T r+con!sarte
o2 [
_k_ V2 _k_ M V2 _k_ M _k_k_k
=% r_rn)c2 1+E~7 = = +my2. |1 27 A r+c:omsarte
4 2

Er=E+E=T+5=pv—(T-E)
E =T Ec=pv-T T=pwT T=pv-T
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Br=B+E,=L=pv-L
L'=pw-L L=pv—L L+ '=pv=pV
e A R e
1+l07
dr'=aXi+dy+dzk=—ox—dy-dk=—dr 21.08
ydr_dxz dy: d7p dx.dy:.d 1 dr_ v
V=gt=dtat dt \/f(fr)t“at +ar%‘2) v
o EZ e

K=V, _dX_ -1 dx_ V _ X

Y 1—%22
r'=X1+y pzk=—xi-yj-zk=r 21.07
X= Y= Z=7
X _ oy 1 aZ_1q
X &Y, a
a_dfa)_
x at(&J‘Ze”
A_dfalaxal_dtdfal : AL_0T_p — s
L GRS & e L=pv—L X PR
xXa_dtdfa
XA TSl L% gt =zer
EZ
0 P M dy_
5_(‘(;;\/4_} vt —V'&—p'& 6)_(. » v ot =zerc
I3

] . 2
%.:zer( %:zer( L'=myc? {1+%Z—Lr<
%—z.'+ 1T\’/ 2%zzer( 2 =1'r'=(-T)(-T)=X?+y*4Z°=X2 +y* +Z°

I3
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% &(mﬁﬁ I L ST
o
X

M, dX_y m;x _
+ =Zer(
1+%§aT / 1+\’
EZ % AT B Ry ezkf =K
2

\/E\);Z I+\/;-r_|lj\);2 +\/r:|’-r_|l_)\zj2R \/;:_b\a'l‘Z Fgfl

ma _ke_k¢ o -ma _ ke _
\/HT é‘r r2I‘ r=r 1+V'2—%Zkr =21.19
c
8§25 Logarithmic spiral
H%VH-MI-I-SA%VW-I-%V\?—B:ZGI’( r= 21.37

VV:%:E—]D[HSC 0&Q)] %V\LA@_QSB @—_QZCS@Q) 21.38
W=%:e—:aL¢F —g® %":—aﬁ’ W _2e
Hefer*-+He0-+3Ade- -4 30 f—B-zer
Here -HHe 130z e 230 —B=zer
(L+a? He™+{1-+a% A2 —B=zer(
(L+a? BAE {182 He®—B=zer
(L+a? RAWH{L:+a? Hw-B=zer
B._
3AW + va—m =Zer(

" em____HJr\/FFM%ﬁaZ, “Hy 1 1@
+a

23A 6A"6A

3{ Ha 1 J@T {GA & Jf%g}(_f)—zer(
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M%&aﬁﬂs{ 25|

-Hi+H
GAiGA

%{35[;2 —1§|&|2\/H2+(1 5) 3&2(H2+%§3M

3
(H+A%) w1l B er

(I—P+3I—I2Aé+3|—IA? L 1Id W+1J+B_zer(

H3+3I—I2A%+3HA3F12 +A3F13;H3+3I-IZA% HA L A3 L =zerc
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(I—P+3AI—F1 %’ZV+1J+B_zer(

(I—P +3AI—FWI%¥7V+WJ+B=zerc

I—P%VJFI—PV\FF%I—F%VVWPAI—FV\HB:RN

wl-LeogQ] Y EH chy oot

FPLMJH—FFJ%[L%C oédQ)]+3AI—FLMJg%[1+SC o&QH

D D
+3AH {d%[lJrgc o@Q)]%qLB:zero
—I—FQZQDSQ +I—F’8T1:)+I—PST1:)800£<|Q)+3A I-?{_QZACB@JS%QA ﬁ{ﬁﬁg”@%b‘coﬂﬂﬁ

+3A I-?{EZ%—? h+28006c|>Q)+szco§(<|Q)]}+B:z ero

_HQ %} +8ﬂ5 +H3coé[i)Q)_%ﬁl—[F)Q2 COE‘)IQ)—BAI—FQZ co§g¢Q) N

+EZ3A€; [1+28006(|Q)+8200§((|Q)]+B=ZEI‘0

l_l;ngﬁ_l_ choéch) %I—Fcho&bQ) BAHzQzCO%g ).,
szcoé(qu)+B_zero

v 225?28006"@*22%5
M.} +|—FCO@Q) SAHZQZCOE(IQ) 3AHZQZCO§§ ’

?EZF GAHZ CO@Q)QN—F%@jLB_zero

—HBQ2 co&Q), L H cotiQ) 3AHQ cofiQ) ?:AFFQ2 C0§(<I>Q)
D 3AI—F8D 3AH D 3A|‘F8D D

3AI—F L BAHE cofiQ), 3AI—FCO§(¢Q) _76r0
"AHZD D D 3AH 3A|—F

—HJ cofiQ) H006<|>Q) QZCOGdQ)Q200§(<I>Q)+
B D DA D

B Gy

124/200



COS(¢Q)_pC0S(¢9Q)_HTF cof) | Hco&iQ) QF cosfQ)
D D 3A D 3A D & D

200600, H . 1 . B _
+8D D +3A9D+;57+W Zero

R T e A e A I

@_Q2)§0§(<I>Q)+ Q1 2008 1 , 1, 1 e

eD) D 3AD ¢ 3AD

o Ogd@*@@g—o D) D ¢
=155
(- BIPUR L) hHr B BAD

(M(g—%) cos(Q) —8—|13+562% Cog)Q)+gz%7:zer(

(PR (1B AR o
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(M)%Q{ 1+GA CO _zer(

o T
D 26A

g (P

CO&I)Q)( )Jl 18D Gs[A)) 284§\
1A

6A 364, 3687
sD j/1 +

CO&IQ)

6A 364, 3687
Coé(bQ) 1 j/1 +

\/1 SA 360‘2%/1_@ 36§ ~7er( A_—OT—GM

368° _ 36 (GMJ _ 36 667101198910° | _yg) 14
£Dr D\ ¢ (5544205500 (2,9979245@3)2

colfd_ (-8)-58

12A

ogn S ) riplo)

CBA (1 18A) 1 6A 1,18\ 1
CO@I)Q) 16118 18l 18
Do DA 2==D

_co), 1 _
D +8D ZEr(

zerezr((IQ)<ooel\/[,¢zereeQ:\/_@‘ CO@)Q) 8%)_zerc
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ot o U

@900 (L1 11210080 1 ger

1 \co&Q) CORQ), 1 _
( DS D2 D2_zer< D e

1—Q2 0 @L{QZ Q2 2 CO@)Q)

r:oo—>|\/[)_zerer:1—>w— = d3[1+gcoédQ)] co +8|—3_zer(

The presence of Q in the formula r=r(<1Q)—1+8CO , allows it to also describe a spiral.

e e S

(2 GraphFunc OniinE R
Math Utilities  Help
Tou

§25 Logarlthmlc Spiral Continuation Il

(]__Q2 Og(dQ) QBZ 30\ 8[2) g%) CO@Q) E2?._7_Zer(

118

Zer@:r(dQ<OO—>|\/b¢zer9_)Q:?§|?
s ILREE R LR
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OB AR B BB

(6_k+mco LA L LEA L LI, 2 2 BAY
eD A AD A AD D DD & DeD

LIRS JREEE S
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1A
zere<r(<|Q<oo—>l\/l,¢zere—>Q=ﬁ—>—%%9+g—%)=zer(
" eD

1-12A

Q= % ~] GA Q?:]__GS_S A-CM

gD:a(l—aQ)%790922K)O@@—(Q205635§§-5546046%6&C

6740831011989 1109
ACAS 42,997924]3!129)Z =147 08%3A

Q= / :Q99999%2C& Q= 1—8—[):(),99999%201

1,276.789.102.53*

¢Q::|_29m0(:00:xb:7129%0m0 Qd. Advance Q>1 Regression

A(I): %—1)129&)0(;0C A(|>>zer< Advance A1)<zer( Regression

M= —L1 _1129600@0-010H4BIFA4
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1 1129600@0-010548B76097
)

PT 36256363004 (
NleO =106 87069 =4121081613¢

> A=AN=010H4B9IH44x 41210816139-420940840347"
> A=AN=010HAB7@97X 4121B1613%-42090771648"

By definition eSZEer(

1-1A

zerar(¢Q<coVh#zere-Q= 1‘% r=co0—IV,=zere-Q=l1
D

DD zere—xam SR zereee—mo

CO

self Q=1
_ 1 _ -1
F co@m)Hg co@)J
Energy Newtonian (Ey)

Q—QZ )%g@og +( —S%J%Q)Jrg,t% —~Xy=zerc

r:‘XHQ:l_)WZr%o :eT13[1+8C oédQ)]zc—O%Q)+8T13:zer<
PETETR -
1—@1357)— % —X 5y=zer

e
8%+ + 82 8% y=Zer( Q=1
b e
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_§§+82DI32 +48622DZD2—2>§2DDZ—52D2y=zer(

T2 +4-2eD-EDPy=zer
_2 _ 2By 2 1_-
2 Y= 1>=eDGN 1)
—1+82+4—2%.3D—82D2y=zer< L+ 2DRy=zerc
_ 2By _ By
1+82—52D2m2_zer( D AN OGN —7er(
2EN 1 (212N
1+82—8Dw_zerc S—D(gz 1)T
K
En Za
8§26 Advancement of the Periélio of Mercury of 42,99 "
Supposing U>X=V
U= XV - VTV 5y
(2.3) \/1+ 2 2vux \/1 ﬁ v Zer(
¢ &
use=v Ux=zer« 21.01
_ V_vux_ R/ XV g Zi/
(1.17) dt=d 1+Z*7 =z =d 1+ :>dt! d
(1.22) dt—dt\/l+c2+ i d 1+C2+ 2 —=dt=d 1+c2
v e
dt=dt|1 = dt=dt l+Ez 21.02
VP 2
1 2 14—Zz 1 21.03
\% V= \4
V———1_|_ - ——1_ = 21.04
fed c
dt>dt v<v' vdevde 21.05
-

(1.33) U=

\/1+ +2V'U'X' \/1+ +J) _\/1+
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(1.34) V= ==
V' _vux v_vv R
N ol N
_ - _ U
A% %
v _V
1+ -7,
r=ri=7" P=rxtr=7 [#=7]=r
dr=dr+rd=dr' dr=dr—rd=-dr
rar=drrr+rrdr=dz rar—drr—rrdr=-dz
g el
V= dt gt —dt g v'=ov

=T C‘&f)— Al @f/}) = W_@@ { %@

a=co_dr ) | iy {g@}{ o2z, I

dt dt dFf dtdt d
_dv _dPr_ i) _ Qﬂ dp drdp
T T [T I{dﬂﬂ[{%gdf r28

_p
o
147

_dv_d| v 1 gt d|_—v _/l v
dt d dtat ST
[+ J [+ 1+

= v -l 1+V'2dV' v'—( 1+%,'2JJ

dt 8’1%2_ cdt = de

12

S e e et )

dv_ [ £ 4 e N e avs
af—w1;@;§ FEar L ac
e V2
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1 advv

adVF( J\/HVQ\/IE?dﬂ\/HZZ \/17'2 dec
S e

e TR _ M dv_ - K V'Zdv'VvdVV'J
\/1 WV \/1_V2dt . 2PN &Jdt T dEd
c Ve (J“EZ
Fepp= T2 = T dv 2151
7 [_72d
AR
e (1 vy
(1]
F=ng= \/fvz = \/11% > ?X_—Fz—%gKHZQ o V’g‘é%'J 21.53
Z Z (
@ZJFd?:jF (—d?')z _?k —d?') 21.54
Ek:JFd?= F (—d?)=j J o > gvt ( %j [(H?)T_V'g‘ég} K—d‘f’) 21.55
&

B \/% o I(TKH%? ar —VdvﬂgJ—J'?fd?'

e

[m m K V'z)dv v'v'J_ —k
g, @W@ZEH vvav?? =[Kar

E= J‘ ﬁi;évz I (1+n% 3IL(1+%Q)dv'V'—V'dV%§J= ;r];dz
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ngvdv my'dv (1 +Vv2_vv2)_
AR

\/1_ (14%'22)2
_J'I%Vdv J'ngv'dv‘ J'—kdr dR= ngvdv ngjv'dv kdr

\/ 15 (14%2 \/ 1- (14?)2

F=mc* 1— _—me _ —Kiconsarte

—K
?- dr

1+%§ r
F=m¢c 1_? —K—consarte Fr= _1:1_552 I]f:con&arte
fed
-mc _k_ m”_k _k
Ep= " }—_I%Ce"‘T - Er= . =m
fea

1 _E k1
o e e

fed
= 1Ir A= k _GMm,_Glg

mc nd mF &

1 _—pial -I—A—)

1+‘£2'2 r (1+22)2 {H
I=r0'=— D{{drr—i- ¢)J=12%@x¢3):12§%k

T=r%v'=—rx \/1_ > =rtx \/11 ‘;[(g?%r@?ﬂ rzg%(rx¢)>r2 g t‘k

1= P -1k r-r%

dR= ng)vdv ng)V'dV —kd krﬁ'

5
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dE_po M dV_kedP'_k»
dt =Fv (1 )Zv'dt‘ T fﬁ'
e

_ md _kz
Wy T

o
_ = od
F'¢——5( 1 (5;% agyfzen
i

= _%)Jﬁé %) JF?A

(HVQ 3[dﬂ2 g@ }r%f

ko2
ap_1 dr__pdw dr_—IFdw
dt r dt  ~dj dt* r* df
1 3[—1%%%_ 3 }_—Gﬁé
egf ™
kel
2
A
(1?)
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{H+A— g;?@g il\éé 21.71

8§25 Logarithmic Spiral continued

{H+Al) (d W+fp GM) 21.71

L°

HiAL )| Py, 1] ~GM
r

& TS L2

1) dAw, 1 |- _ Er _GM _GM
H+A? d—d)ZJrF =B H*_czm) A——C,r B——Z—L,

w

w

H+A% w1 LB er

dy T
(I—P+3I—I2A%+3I—IA?F12+A3F13{%"+%]+B=Z€“

H+3H£ALHA L A3 LR 3Pal HA L A L ~zerc
e r [

(I—P+3AI—F1 %‘;,V+1]+B_zer(

(I—F +3AFFWI%’ZV+WJ+B:zer(

I—P%VH—P\/\HSAI-F%"V\H?:AI—F\/\HB:RH

W:%:s—][-)[l—kac 0&iQ)] %W_ﬂsg)@ (ii\)é\/—_QzClg@Q) 21.38

The first hypothesis to obtain a particular solution of the differential equation is to assume the infinite radius
I'=0C, thus obtaining:

w=L. =E—%)[1+acoe<|>Q)]:zero:ecoe¢Q):—l %{V—_GCS@Q—_GS:S@Q)—,%

rﬁq_@gumww%vmwm&zen

dtw_C _Er _me_
WW=ZEr( a7 Hm)CZ me 1
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(—1)‘(?;![))+(—1)3(zerc)+?»6(—1)2(§|E3 zerg+3A(—1y(zerr +B=zert
{%)+B:zer( —%%D&zer(
—F+Hl=zer( Q=1

This result shows that in infinity the influence of the central mass is zero IM,=Z€r(

The second hypothesis to obtain another particular solution of the differential equation is obtained by
observing that the angle ((IQ) of the equation SCO@Q)Z—I indicates the direction of the infinite radius

I'=0C where the influence of the central mass is zero NLZZGI’( and GZJ. therefore the direction of the

center of mass is given by the angle ((IQ-I—TC) that replaced in the equation SCO@Q)=—1 results in the

new equation SCO@Q-I-TE)Z—]. that indicates direction opposite the direction of the infinite radius which is
the direction of the center of mass.

eCORIQH+T=1 COGYH+T)=CORI) gd—CcoiQf1 eCORIQL
wel=LtsecofiQl= L(1+0)=2 @V—Q CORHQ)_-QoL06iQ_-F

2 dw_—&F _EBR_—me_
"= df & e me
HBOPW - 3AHR PV 3AHPWR -+ B=7er ¢

o7
-2 (2 a2 | 2 Jranif( 2 f+Bzerc

(8B Z R o
(0

_2

5 30\8% +3Agﬁ+B_zer(

Q_;_%Ag 1A

DD +25,+B:zer(

eDG_2D_eBAG . 1 eDGN_eDGN_
54k 7§Q+—62§9\+8D&zer( DB ="n e ~DGM =

5 BAG 1A 1
2 8|:)+1((33[§\+1 7er

137/200



_AC 1A =
G852 N
eD
Applying the results of the second hypothesis in the differential equation:
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Where applying the result of the second hypothesis 8CO&|Q)=1:)CO@|Q)=%:

11_1
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That it is an identity demonstrating that the result of the second hypothesis is correct.
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§27 Advancement of Perihelion of Mercury of 42.99” "contour Conditions"

Let us start from the equation expressing the equilibrium of forces:
mad _ k-
WP T
()

On the right side we have the gravitational force %f defined by Newton, on the left side we have the

j= 21.65

M of the Undulating Relativity.

ulz 7
(1+%)

The physical properties of equation 21.65 require its validity when its radius varies from a radius greater than
zero to an infinite radius, so the radius varies from zero < r < o, and so we have two distinct boundary
conditions. The first boundary condition is when the radius is infinite r = co and the gravitational force is zero,
which means that the particle is at rest with v’ = zero and a’ = zero and the second boundary condition is
when the radius is greater which is zero and smaller than infinity zero < r < o which means that the particle
is in motion due to the influence of a gravitational force 21.65 with v' # zero and a’ # zero.

physical description of Force F' =

In §26 following the calculations is substituted in 21.65, the equality, 21.62, 21.69 and

= _GM _GM s
—W A—T B—Tz—,morew—;.

After these substitutions we obtain the differential equation:

FF%’ZV+|-P\/\/—I—3A|-F%\T/7VV\I-I—3A|-F\/\F+B=ZGH 27.1

This equation has to be valid for the same boundary conditions as equation 21.65, that is, it has to be valid
from a radius r greater than zero (r > zero) to an infinite radius (zero < r < o). Your solution is given by:

vv:%:é[ﬂscoéd@)] 27.2

Which should cover the two contour conditions already described.

Applying solution 27.2 in differential equation 27.1 we have:

HEOPW_ i 3AHR B Wi 3AHPWZ +B=7er
o o

W:%:E—][-)[l—kac 0&4Q)] %I)V\L_ﬂsgqg) ?;;V—_QZCSQIQ) 21.38
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@_Q2)§0§(¢Q) % % %+ s% cosi)_ 1 +2 g ?AgD—zer(
@ 1 Q

(1—Q2 0§<|>Q)

1 @ 2co6Q), 1 _
A A 8D+8D D +5252 Zer( 27.3

This equation must have solution for the same two contour conditions of 21.65.

Solution of 27.3 for the first boundary condition which is when the radius is infinite r = o, and the
gravitational force is zero which means that the particle is at rest and we have

v' = zero and a’ = zero.

Applying d=1 in 27.3 we get:

2 2 2
(-1 By (oL L )elby 1~ sero.
D 34 3A eD €D D e“D
cos(®) +1 = zero e =—1 27.4
D &D cos(®)

Equation 27.4 is exactly equal to the result of equation 27.2 when the radius is infinite r = co, w = zero and Q
=1, as shown in 27.5:

w= r:loo = i [1+ ecos(0Q)] = [1 + ecos(@1)] = Cos(o) + 5 = zero 27.5

Therefore in 27.4 we have an exact result that describes how in infinity the eccentricity € is related to the
angle @ of the infinite radius of the particle, being € = 1 which means that the motion from infinity will be or
parabolic with e = 1 or hyperbolic with € > 1. Note that by definition £ > zero.

Solution of 27.3 for the second boundary condition which is when the radius is greater than zero and less
than infinity zero < r < o which means that the particle is in motion due to the influence of a gravitational

force with v’ # zero and @’ # zero.

12A
1- eD
6A

eD

(1 _Qz Og(@){%_ 3_1A _(C%Jr 8_%) J&g)Q)Jrs 1 —zerc 273

Applying Q = in 27.3 we have:

BRI B S e
(—M%@{% KB HAB b HE SRR g

(m)ﬁ@ { “CO@Q oI T Rk
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—M+i=zero £ =—1 27.6
D eD cos(9Q)

In the theory of conic for hyperbole we have ¢ = % equating to 27.6 we have ¢ = % = Cos(m) This results

a = c.cos(PQ)) which is the correct formula, of the greater half axis of hyperbola.
Therefore in 27.6 we have an exact result that describes how in the course of zero < r < o the eccentricity €
is related to the angle @ of the particle, being € = 1 which means that the motion will be or parabolic with
& =1 or hyperbolic with € > 1. Note that by definition £ > zero
§28 Simplified Periellium Advance

Perihelion Retrogression Q>1
Imagine that the sun and Mercury are two particles, with the Sun being at the origin of a coordinate system
and Mercury lying at a point A on the xy plane. The vector radius ¥ = rf connecting the origin to point A will
describe Mercury's motion in the xy plane.
In the description of the movement of the planet Mercury to the observer O’ corresponds to the variables with
line for the observer O as without line being used a single radius ¢ = rf and a single coordinate system for
both observers.

Time t' is a function of time t that is t' = t'(t) and time t is a function of time t' thatist =1t (t ).

de=dt |1+% dt’ = dt [1-2 21.02
C C

1-L [1+% =1 21.03
C C
v v/
v = v = 21.04
1-Z—§ /1+VCL22
dt > dt’ vV >v vdt = v'dt’ 21.05
f=rf dr = drf + rdf #.d¥ = drt’¥ + rf. df = dr 28.01

The radius can be considered a function of time t' = t'(t) ie ¥ = 7(t") = #[t'(t)] or it can be considered a
function of time t = t(t') ie ¥ = 7#(t) = #[t(t)].

F=7{) =Tt ®)] F =7 = F[t(t)] 28.02
= dr _ dr $ - df _ dr, do
vV =— V=—=—T+4+r—
dv dtr dtr @ dt dt + dt @
v = dr dr dt _dr1 v 7 = d? dr de adf 1 W
Tat T drdv  de 9 T v2 T dt dvde  dv 9 T vi2
dt 1_C_2 dts 1+C_2
v vr
V' = V= 28.03
v2 vi2
1_C_2 1+C_2
L, dv  d%® a2@d)  [d?r do)z o dr d¢ d2g
a=—=—= =|—=- r 2—— ) 28.04
dt  dt2 dt? dt? + dt dt tr dt? 4
5 dvr _ d?F _ d2(rd) _ [d?%r dr do d2®)
= Tar T awr a2 + dtr dtr w2 0 28.05

Both speeds and accelerations are positive.

 _dv_dtdf ¥
T dv  dt'dt LV

148/200



Fromed _Fo_me (1
1+%2 (1_\61_;)%[(
Exe=[F.di=[F.di=[-=%

mear m
B = [FE5 a7 = [ (1-
vr2 2\5
wE ey
c C2
_ rmovrdvr __ ~ movdv
Ek - 2 3 f
v/ 2\5
1+— ( \4 )2
C 1-—
o3
E, = 2 |1 vi2 moc?
k = M,C Ttz = ==
=
2
__ mgpcC k _ 2
Ep = —=-=m,C

In this first variant relativistic kinetic energy is greater than inertial energy
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Mercury's perihelion to recede. The planet seems heavier due to the movement.

d?r _
dt?

28.06

28.07

28.08

28.09

28.10

2
2 > m,c2.This causes

1——
c2

28.11

= Zero

-L2 d?w

r2 dg?

dE dar m vldv m, VdV k dar
= dr o oVar A~ dar
d_tkde— Zdtr - dt —=dr =t
! !
/1+"2 Ly
iE g mgd¥ .
=5 = 0 0V ar A =
ke F V=l =2 dt — gy =——{§
dt v/ 3 2 r2
(1+c—2) v2\2
B
dE =N movr.ar mov.d kK A - =3 mod k
Zk_Fy=22 o~ = 2 3= —3I.V F = 03=——2r
dt 1+L 2\5 T 225 r
= ey (-5
c c2
S m d?r ae\?] . drdg |, _d?¢\ ~ K
F = el 3{—2— (—) r+(2—— —Z)Q ——27"
J2vg Lat dt dt dt dt r
(1-%)
> dr do a?e\ = aL _ d ao dr do a*p
Fg= (2—— —2) @ = zero (rz ) 2r——+r?
dt dt dt at  de dt dt dt
> mo [a?r an\?] . k
FA=—°3[—2—r(—) f=—=7
v2\z Lat dat r
(1-%)
mo [atr _ (d(b)z _ k
2 Lat? at) | r2
(-2)
CZ
dag L ar _ aw
dt ~ r? dc dg
1 [-12 a?w ( L )2 k1
v2 % r2 dg? r? me r?
(-%)
1 L2 d2w L2 k1
1 pr(L)]=x
v2 % [r2 dp? r2 me 12
(-%)
1 (dzw 1) _k Q= _kK _k
% ap? ' r moL2 T mec? T meL?

149/200



3
5= (1+47) =13+341+342 S+ A5 =1+34> 3421 4 43 L = zero
r T T T T T T

1\ [d?w | 1
(1+342) (G +1) =8
(1434 )wz (1+342)2—B = zero
d%w d%w1
W+3A__+ +3A——B zero
LW L34 4w+ 3Aw? — B =
207 W W w? = zero

d?w d?w 2 _
?+W+3AWW+3AW — B = zero

_1_1 dw _ —Qsen(9Q) a’w _ —Q%cos(8Q)
WEI T o [1+ cos(0Q)] ¢~ D ag? D

—_QZCZS((DQ) — [1 +ecos(9Q)] +34 —Q cos(0Q) 1 —[1+ ecos(9Q)] + 34 { ; [1+ ecos((DQ)]}2 — B = zero

02 cos(9Q) p Ly s cos(9Q) 3AQ2 1 cos(8Q) — 3402 cos (00) 434 64 cos(pQ) 134 cos®(9Q) B = zero
D eD D D €2p2 e D D2
cos ((DQ) ( N2 _ 2 1 ﬁ) cos(@Q) , 1 34 o
(34— 3AQ )— 1-0 3AQ s + s > + Py B = zero
(ﬁ _ 3AQ2) cos?(6Q) (i _ Q_2 _ 34Q% 1 6A )cos((Z)Q) 1 34 eDB _ zero
34 34 D2 34 34 3A eD  3AeD D 34eD = 3Ae2D2  eD3A
_ &k _ eDGMomgy _
eDB = moL?  moGMgeD
2 2 2 1
(1-0) == ((DQ) (— - %, —) s | Ly L = zero
34 3A &D €D D 3AeD  &2D?  eD3A
a Q)cos(oo) (__Q_Z_Q_2+1)M+;_Z€m Qz_“’%
34 34 e ep) D £2p2 T 148A

1+12A Z(QQ) 1 1 1+12A 1 1+12A 2 (Q)Q) 1
cos cos
1- (g )|l L L) (e )y 2 + sz = 7670
1435 D 34 34\ 1+ e\ 1455 &b D &2p

0 S0 OO Ly LT T 2 s

eD eD D? D

1 6A
+ ipz (1 + 5) = zero

eD 3A eD eD

_ 6A cos*(9Q) 2 1 4 1 12A 2 12A " cos(9Q) 1 1 6A
L4212 . — — = zero
eD D2 34 eD 3A & e £2D2  eD @ £2Dp? D €2p2  £2p2¢D
6A cos?(0Q) 1 cos(6Q) 1 1
%D 2 (__)—+ 2pz T s2pz.n . Z€T0
eD D eD D &“D g“D“ gD

cos?(8Q) . cos(8Q) 1 6A

bA——F—+———————=zero
D D &D g“D
1 6A
cos((Z)Q) -1t j1- 46A( €D 52D2)
D 2.6A
—1 14244, 10047
cos(9Q) + eD " g2p2
D 2.6A
1242
cos@) _ ~1)(1+55)
D 12A

150/200

28.12

28.13

28.14



A
cos(®Q) —1+(1+£)
D 124
A
Cos((Z)Q) —1+1+L _ i
D 124 D
cos(®Q) _ 1 _
D D cos(0Q) zero
For hyperbole eccentricity (¢) is defined as ¢ = (@Q) where (@) is the angle of the asymptote.
Advance of the Periellium Q<1
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In this second variant relativistic kinetic energy is smaller than inertial energy —=2
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advance of Mercury's perihelion. The planet really is lighter due to movement.
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1 [L2atw (ﬂ)z L2
(1 2 % r2 dg? r? mg T2
+c_2)
1 a’w 1 k k Kk
o2 %(d(bz ;) molL'? A= mec? B= molL'?
(1+C_2)
3
1 1 1 1 1 1 1 1
— 5 =(1-43) =1-342+342 5 - AL =1-34> 3422 — 431 = zero
vr2 2 T T T T T T T
(1+C_2)
1 d?w 1
(1-342) (Wﬁ) =B 28.21
1\ d? 1\ 1
(1 —3A—)—V2V+ (1 —3A—)——B = zero
r/ do r/r
d?w d’w1 1 1
W_:;AW;-F:_:;AT_Z_B = Zero
a? a2
£¥ 3422w+ w—34w? — B = zero
dap? ap?
d?w d?w 2
—+w—34A—w — 34Aw* — B = zero 28.22
dap? ap?
_1_ 1 dw _ —Qsen(9Q) d?w _ —Q%cos(9Q)
w= r &b [1 + £COS(®Q)] [«10] - D dp? - D

—Q%cos(8Q) 1 -
—3 *t3 [1+ ecos(9Q)] — 34

Q*cos(9Q) 1

2

1
D ol [1 4+ ecos(®Q)] — 34 {5 [1+ scos((Z)Q)]} — B = zero
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2
_Q2 cos(pQ) + 1 4 05000 cos((Z)Q) + 3AQ2 1 cos(Q)Q) + 3AQ2 cos (Q)Q) [ 3A 64 cos(9Q) +34 cos ((Z)Q)] B = zero

D eD 2pz2 " eD D
_QZ cos(0Q) + 1 4 cos@Q) cos(Q)Q) + 3AQZ 1 cos((?)Q) + 3AQZ cos (Q)Q) _ 34 %COS(QQ) 34 cos2(9Q) — B = zero
D eD e2p2 e D D2
2
2 _ cos“(0Q) ( N2 21 ﬁ) cos(8Q) 1 34 _
(34Q 34) Yz +(1—-0°+ 340 > " 3) o + P B = zero
34Q% 34 2 1 2 34Q% 1 6A 1 34 B
(BL _sayeot00) | (1@ 3401 e yeosog)y 1 4B,
34 34 D 34 34 3A eD  3AeD D 34eD  3A£2D 34
2 2
2 _ cos=(6Q) (L _Q° 21 i) cos(6Q) 1 1 &DB _
@ D D2 + 34 34 +Q eD &b D + 3AeD  &2D%2  eD3A = Z€ero
DB = ‘sDk,2 — eDGMymg —
molL myGMyeD
cos ((Z)Q) ( 1 e 2 1 )cos((Z)Q) _ 1 1 1
1-Q)— 34 + Q SD D 34eD + £2D2 + ep3a  Z€T0
((Z)Q) 1 1 ©Q) , 1 122
cos 1,0 2 cos — 2 _ D
1-0)—0 ( 34 + Q sD) D + gzpz  Z€ro Q 184
&D
1 12A 2((2) ) 1 1 1 12A 1 1 12A 5 (0 ) 1
N cos N YD 0.
1-1—2 Dil-t+2(—Z) -2 (= )+ 222, 1~ zero
1-84 D2 34 34\ 1-%2 ) 1-84 eD D £2p2
&D &D &D

(1-5-1+ ) 5 [ (- + 5 (=) -5 - + S (- D=2+ 2 (1 -

zero
6A cos?(0Q) 1 2 1 4 1 12A 2 12A cos(®Q) 1 1 6A
- +(——+—+ ————— to55t = ) — - = Zero
eD D2 34 eD 3A e e &2D2  eD  g2Dp? D €2p2  g2p2¢p
6A cos2(9 1Y cos(® 1 1 A
6A (2Q) (__) (2Q) _ = zero
eD D2 eD D €2p2  g2pZep
2
cos“(Q) cos(PQ) 1 6A
6A—Z——+——ﬁ=zero
D D &b &4D
1 6A
cos(0Q) 1+\j1 4'6‘4(‘2D sZDZ)
D 2.6A
14 [1-244 144A2
cos(Q) _ -+ eD ' g2p2
D 2.6A
1242
cos(9Q) _ 1% ()
D 124
12A
cos(9Q) _ li(l‘g_p)
D 124
12A
cos(pQ) _ 1-1+—75
D 124 D
cos(0Q) 1 1
st _ L £ — = zero
D eD cos(0Q)

For hyperbole eccentricity (¢) is defined as € = where (@) is the angle of the asymptote.

(OQ)
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The movements of the ellipses will focus F ‘(left) on the origin of the frame.

S BRI

—g2 —0 g2
All ellipses are described by the equation r = r(t) = 1+£:ODS = 122055(32) = 1i’(()18£f(t)0) In these the angle

vector radius (tQ), indicates the position of the planet Mercury in all ellipses, the movement of Mercury in the
ellipses is counterclockwise, with the value of Q being the cause of perihelion advancement or retraction.

The first ellipse in blue represents retrogression of the perihelion, where we have Q = 1.1.

The second red ellipse represents the advancement of the perihelion, in this we have Q = 0.9. In this ellipse

the perihelion and aphelion advance in the trigonometric sense, that is, counterclockwise which is the same
direction as the planet's movement in the ellipse.

The fifth ellipse in green represents a stationary ellipse Q = 1.
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29 Yukawa Potential Energy

Newton's gravitational potential energy Epy

P =VEF= [(-59) (-57) = (&) 7= (&) =%
dE

= . K _dEp Kk
F=—Ff Epn = —~ F="P=2
F=_%s_ ks
F= o 1=z
Yukawa potential energy Epy
—ar
Epy = —kE— = —kr~lear k>zer: a = zero

Potential Core EnergyEy

Breaking apart E,y = —k%ar we get:

—ar k 1 1
EN = —ker = (— ;) (E) = EpNCY Cy = E k>zer‘
a=zero »Cy=1->Ey=Ey r = o - Ey = zero
dE d dr dr
e afenen e s o)
dE, = i(—kr‘le‘z"r) = —k(-r"2e™3¥ —ar~le7) = ke_ar + ake_ar
dr dr 12 r

ar

dE, _ d ( ke‘ar) _ (k e” 4 ke‘”)
dr  dr r /) r2 a r

e—ar e—ar e—ar e—ar
E,y=|dE, = | d(-k = ||k + ak dr=—k + constante
p p r r2 r T
dE

- P e—ar e—ar ~ .
F= ——Pt= —k S +a—)f Attractive force
= - mea me dv
F=m3a=-2 = —
T e«
c2 c2
F = ma = Meil - Mo dV

First variant.

v2
-
Ex=[F d*—fm"vi‘zl = —f(k 5 + ak* ar)dr dEx =F.dt = movcvhzf_ _k(e
i -
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—ar

) + constante

e—ar VZ e—ar
+ constante Ex=-my? [1-==k

— 2 —
Ex = —m,c 1—C—2—kr =

2 —ar 2 —aoo
_ 2 _ V2 e _ 2 _ 2 _(zero)_ e@® 2
Er = —m,c /1 = k — = —m,C Er = —m,c ’1 = k —— = —In,C
vz mgc? k e™ar k
1- 2 =M A=
2 mec2 mec? r mgc?

2 —ar
1-==1-A°2
C r
- ., mgyvdv e ar e "
dEy = F.dr = =—k|—+ta—])dr
L V2 r
cz
dv _ _
dEy dr MmMeVy k(e ar 4 e ar) dr
=F—= = F—
dt dt V2 r? r dt
1-=
c
dEy movg_f e r e r
—Fv= = k(S +a—)
dt 1 v2 r r
e
5 m,a e ey |
F= = —k( - ta )r
| v2 r r
s
o _mo_ ([a’r _ (@)2 P (200 @)A = k(S as)
F= 1_ﬁ{dt2 r(=;) |T+(2;5, troz) 9= ki +a—)7
c2
= (., drdg dzw)A_ dL_d( zdw)_ drdp , ,d%p _
Fg = (Zdtdt T @ = zero ac ac\" ar) T zrdtdt g = zero
= mg d2r (d_(b)z A (e—ar e—ar) R
Fr = VZ[dtZ ) |7 = k(—-+a 7
3
ar (@)2 _ _L(e‘“ e‘“) 1"
dt? dt T mg \ r2 c2
&r_ (@)2 Sl -2
dt? dt T mo\ r2 c2
d?r de\? k (e”? —ar ear
dt? (dt) __m_o( r2 a )(1_A r )
@w_ 1L ar _ _p dw dr _ 12t
dt ~ r2? at e dtz "~ r2 dg?
-L2 d?w L2 k fe™? e”ar e~ar
i () = () (-2
d?w | 1 kK 5 (e ar e_ar)( e_ar) _k
dg?  r  mglL? r2 ta r 1-A r B mgL2
d2W 1 _ 2 (e—ar e—ar)( e ar) _ k
ag? Br r2 a r 1-4 r B mglL2
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a’w 1

+1=Ber(1- A%ar) +aBre™" (1 - Ae_ar)

ag? ' r r

‘ZZTVZV % = Be ™ — ABe™ @ ? + aBre=" — aABre=ar & —

ZZTVZV +2=Be a — AB e + aBre 3" — aABe 23" w=1 r=w!
T r T

ZZTVZV +w=Be @ ' — ABwe 23" ' 4 aBw~le=aW ' — aABe 23V "

‘ZZT‘;V +w=Be ' +aBw le @ — ABwe 2a% ' — gABe 2aW

ZZTVZV +w=(1+aw )Be® ' — (w +a)ABe W

ZZTVZV +w=[(1+aw™) — (w+a)Ae @ '[Be2W

r= Qcols((b) w =1 = Qcos(®) 5 = ~0sen(®) (:TVZV = ~Qcos(@)

1

—Qcos(®) + Qcos(®) = [(1 +aw™!) — (w + a)Ae‘aW_l]Be‘aW_

1

zero = [(1 +aw™) — (w + a)Ae @ ' |Be™@""

(1 + aw—i) - (W + a)Ae—aw‘1 = zero w = % = QcoS(@) r=w-1l= Qco1s(m
[1 t cos@l ~ [Qcos(@) + a]Ae™" ~ = zero
Qcos(®) (1 + Qc;(m) — Qcos(®)[Qcos(B) + a]Ae™2¥ ' = zero

Qcos(@) + a — Q%cos?(P)Ae™®" ' — Qcos(@)aAe ™" = zero
—Qcos(@) — a + Q%cos2(P)Ae " " + Qcos(@)aAe @ = zero
Q%cos2(P)Ae™W " — Qcos(®) + Qcos(P)aAe ' —a = zero
Q%cos?(®)Ae ™" — Qcos(®)(1 — aAe™™ ) — a = zero

Q%cos2(@)Ae™a" " — Qcos(®)(1 — aAe‘aW_l) —a = zero

1—aAe@w " 4+ \[ (1—aAe2)’ — 4Ae=aw ! (—a)

Qcos(@) =

2Aeaw™!

1= aAe ' +/1 — 2aAe=aW ™" 4 a2AZe~2aw " | 4gAe—aw
Qcos(P) = Py

_1- ahe™ ' + /1 + 2aAe=a"! 4 a2A%e-2aw
Qcos(@) = PP

1—ahe™ & (1+ aAe—f"W"l)2
Qcos(@) = T
Qcos(g) = L7 2ACT £ (1 +ane™ )
cos(@) =

2Ae—aw ™!
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1—aAe™@W ' — 1 —aAe 3 "

Qcos(®) = T
—aAe W' — gAemaW "
Qeos(0) = ———=
1 —a—-a —2a -1
w=-= Qcos(@) = = ——a r=— E, = constante
dEp d k e—ar k e—ar k e—ar
W g () = (o rak ) = zero
e +ak e _ Lero -, r=2 E, = constante
r2 r r a p
—ar -1
Epy = —ker = —kr~le @ = —k(—a)e ¥« = ake
Qcos(@) = 1—afe™ "+ (1+ake @)
B 2Ae—aw "
1= ahe ™™ ' 4+ 1+ afe aW "
Qcos(®) = TAeaw T
1 2 1
W= = Qs = T T e
Second variant.
= mg @» _ e—ar emary
B = ( _ : )r 21.15

vz dtr
1+C_2

E=F.di = [ 2 di = [k (S +at
1

—ar

v'2 e
E, = m,c? 1+—=—(—k
k my,C c -

) + constante

2 V’2 e—ar 2 v,2 e—ar 2
Ex = myc 1+C—2=kT+constante Ex = myc 1+C—2=k — +mgC
vi2 e—ar (zero)? e—a®
Eg = m,c? 1+F—k— = m,c? Eg = m,c? f1+ = —k—=m,c?
1 +vl mgc? k e A= k
c2 moc2  mgc2 T T mec?

158/200



, . e e—ar
dE, = F.d7t = _—k( —+a )dr
V2 r r
1+—
C
dE dr m,v’ dv’ ar ar d
— ar oV .7 e e r
dt t V2 r? r dt
1+—
C
dE v dv’ e—ar e—ar
=, - o ! A
—1( =F.V dt —k( +a >rv’
dt V2 r? r
1+—
C
m =7 e—ar e—ar
L S G
v'2 r r
5, dr a9\?] - drdo . d*0\5 e™ | eTany
0
F'= , vlz{ at? (dtl) ]r + ( dtr dtr duZ) @} ( r2 ta r )T
(2 drao dz@)@:zero d_in(rzﬂ)z parde
dtr dtl dt/z dtr  dtr dtr dtr dtr
2 . —ar —ary
v/2 dtr2 dtr ] r k( r? ta )T
[ 42 do\2] k —ar —ar 2
L (B) == (et 1+
jdtr atr/ | Mo \ I r c
[ a2r ae\?] _ k (e@r e ar V2
|dtr? r (E) 1 mo( r? ta r ) 1+ c?
[ a2r e 27 _ k [e—ar e—ar e—ar
_dt’z_r(ﬁ)__ mo(r2 ta r)(1+A r)
@ _ v ar_ _psaw
der 12 dtr do
_L2 42w L\ 2 k [e—ar —ar e—ar
[rzw—r(r—z)]——m—o( tat ) (1+a5)
e e (S (144%0)
dg? v moLs? a
w = () (1)
dap? + o Br
d? 1 _ _ —ar
$+;=B ar(1+A—)+aBre ar( er)
d2 —ar —ar
ﬁ + % = Be @ + ABe™@ I — —+ aBre™@" + aABre 2 = — -
w1 —ar —2ar _1
d®2+r—Be + aABe W=
a*w -2 1g—aw™! —2aw™1
2 TW= Be ' 4+ ABwe 22% ' 4+ aBw le™W ' 4 aABe 23V
a’w —aw™ ~lg—aw” —2aw~?! —2aw~?!
2z tW= Be '+ aBw " + ABwe + aABe
d@z Y +w=(1+aw )Be @ ' + (w+ a)ABe 23V’
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2 d%p
r‘— = zero
dtr?
d’r  -L?d*w
dt’2 = 12 dp?
k
B=——
mgLs
k
B=——
mgLs
r=w



d?w

+w=[L+aw™) + w+ a)Ae‘aW_l]Be‘a""_1

ap?
1 1 d d?
r= 0cos@) w = ; = QCOS(@) % = —Qsen(ﬁ) Tﬂvzv = —Qcos(®)
—Qcos(®) + Qcos(®) = [(1 +aw™) + (w + a)Ae‘a“"’_l]Be“"“"’_1
zero = [(1 +aw™) + (w + a)Ae‘E‘W_l]Be“j“"’_1
-1 —aw™1 _ — l — — -1 _ 1

(1+aw™) + (w + a)Ae = zero w=-_= Qcos (D) rEWT = o
[1 + Qcoas(@)] + [Qcos(@) + alAe " = zero
Qcos(@) (1 + Qcoi(@)) + Qcos(@)[Qcos(®) + alAe™"" = zero
Qcos(®) + a + Q%cos2(P)Ae W ' + Qcos(P)aAe W ' = zero
Q2%cos2(@)Ae """ + Qcos(®) + Qcos(P)aAe " ' + a = zero
Q%cos?(@)Ae™ " + Qcos(®)(1 + aAe‘aW_l) +a = zero

—(1+afe™ ) £ \/(1 + aaAe“"“"’_l)2 — 4Ae~a% ' (a)
Qcos(®) = T

—(1+aAe ™) £ /1 + 2ahea""! + a2A2e~2aw " — 4gAe=aW "
Qcos(®) = e

—(1—aAe ™) + /1 — 2ahe=aW! 4 a2A2e-2aw ™"
Qcos(®) = e

-(1- aAe_aW_l) + \[(1 - aAe"’J‘W_l)2
Qcos(@) = S Aaaw

—(1—aAe™ ') £ (1 —ahe™ )
Qcos(@) = SAeaw

1 —1+aAe ™™ 41 —ade @

w= - = Qcos(P) = Ao = zero

—(1—aAe™ ') £ (1 —ahe™ )
Qcos(@) = SAeaw
Qcos() = 1t+aAe=aW 11 aae-aw™l W= 1_ 0cos(9) N 1

- 2Ae—aw™1 T - ~ Qcos(®)
1 _ —2+2aAe™ " —1+4ahe™ 1

W= = Qs = T T T e 4T pgman
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= K k)2
F=-2t F=[F| = VF F—/—r—z )(-57) = J \/rz)z
= o K
F=-r By =7 e
Fo_ o kg
F= o 1=z
Yukawa potential energy Epy

Epy = —ke_:r = —kr~le™ k>zer
d&_ i _lep—lp—ary — __ _ —1—12 —ar —1\,—ar ( _ E
dr dr( kr~e ) - k{[( 1)1‘ dr] € + (I‘ )e ( adr)}
dE d e”
P T Lrlamal)y — _J(—p—2p—ar _ nn—lg-ary — -2 ,-ar —1,-ary —
i dr( kr~te™@r) k(—r—%e ar 'e @) =k(r“e @ +ar te™™) k(r
d& _ i(_k e—ar> 1 <e—ar N ae—ar>
dr dr r r? r

—ar —ar e—ar
E_de_kf kf +as )d k=

_ med
Ek - f v2
-z
_ mpvdv
Ek - f v2
e
%’ -
dEk =F.dr =
E, =
ER -
meC
ER = - 2
v'?
1+C_2

§ 29 Yukawa Potential Energy “Continuation”

Newton's gravitational potential energy Epy

—ar ~
+a )r
r
2 — -
m v/ davr davr vr
[
VIZ\Z c tr trc
_2)
12 ’ ar —ar
m v davr av' vr e e ~
2 3[(1+—2) 7 ’—,2 k( > a )I‘
23 cc Jat dat’ c r r
!
cz>
e—ar e—ary
dF = [~k (S +a"—)7.dF
my davr ,dvl vr e”darn o .,
1472 ) ] dr ( 7.dr
El [( dtr dtr c2 r

—ar —ar
muvldv; -k (e _ e )dr
V’2 2 r r
<1+C_2)
—ar
Mo — _ (—k ) + constante
v'?
C2

—m,c
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r2

k>zer

a>Zer(

ar
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Attractive force
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1 e—ary3 k
——==(1-4") =k
( 23 r mocC
v
1+_)
2
[
dv'
dv
dE > myv dt' e"ar e”ar\ dr
s ar | meS (e e
dtr ( ) r r dt
~dv davr
dE =N meV- meVr e—ar emary
B _ g o M M (g
dtr (1_C_2) N r
(1+C—2)
dE > myv.a movr.ar e~ar e”an
_k:F’.v’: 0 :‘773:—1(( > a )T\_;,
dt (I_C_Z) 22 r r
<1+C_2)
N maar e—ar e~ary
Fl=—""—= —k( —+a )r
vI12\2 r
(1+C—2)
fre=_mo ([ _ r(d_w)z pran dzw)@ = k(S
w2 % dtr? datr dtr dtr dtr? r2
(1+C—2)
> dr do d?g\ = dLr d
F’@=(2—— )(b=zero ———(r
dtr dtr dtr? dtr dtr
> my  [d?r a9\?] . mar o emarny
= ma[ (V] (€7 46
r PN acz  \atr 2 r
(1+C—2)
my d?r _r (d_(b)z _ k(e—ar ae—ar)
iz at? datr r2
(1+c_2)
dg _ Lr dr _ ;dw
dtr 12 dtr ap
1 —L'2 g2w (L,)Z k (e ar e—ar)
——-rl5 -— a
w2\3 El IR dp? r2 m, r2 r
(1+—2)
c
1 L2 d2w+r(L!)2 ok (e—af+ae—af)
( WZ% r2 dp? r2 T mo \ r2 r
)
[
1 [LIZ dzw L’Z] k (e—ar + e—ar)
AT (R a
VN3 r2 dg? = r3 mo \ r? r
()
c
1 [dzw 1] __k 2 (e_ar " ae_ar)
( Vg 3 lag? mgyL'2 r2 r
1+—2>
C
1 d*w e~ar
. Bre (S 4 at)
vz % (d(z)2 r)
(1+C—2)
1 e —2ar e—3ar
(-4 - P
2
!
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dtr

):

dr do

dtr dtr

2 d%p
— = zero
dtr?
d’r _ -L"?d*w
ez~ r?2 de?
k
B=—-+:
molL
k
B=—-+
mgL'2
k
A= 5
mec
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(1-3450) & ( )i = b1 (T +ar)

d2W d we —ar _ 2 e—ar e—ar

W_gAW Br(r2+a r)

d? d?w e™ar _ _

ﬁ—%l%e = Be ™ + raBe™ @

d?w1 d?w e™ar 1 e7ar e _ar _1

aer A e T T34 =B+ aBe w=s

da?w _ _ _ _

=V 3AW8 ary,2 4 w? —34e w3 = Be ¥'w + aBe "

d*w 2 d*w —ar,,,2 —ar,,,3 —ar —ar

WW+W =3AW6 w* 4+ 34e *"'w> 4+ Be™*'w + aBe

d*w 2 e—ar

WW+W = 3AWW + 34Aw?3 + Bw + aB 28.22
1 ; _ d . . d? i _ .

W=;=xel®+ye i £= ixe® — iye® —dw‘;’:—xel@—ye i0 i=+/-1

) . . ) . . d?
(—xe® — ye ™) (xe™® + ye ) + (xe® + ye“‘z’)2 = <3A dQ)‘Z w? + 34w? + Bw + aB)

(—xe® — ye=®)(xel® + ye ) = [(—xe®)(xe®) + (—xe™®)(ye ) + (—ye~)(xe™®) + (—ye~®)(ye~?)]
= (—x%e® — xy — yx — y?e20) = —(x2e?0 + 2xy + yZe ) = —(xe® + ye—i(b)z

. . . . d*w
—(xe® + ye“‘z’)2 + (xe®® + ye‘“")2 = <3AWW + 3Aw® + Bw + aB)

2

dsw
zero = e™3" <3A 10 w? + 34w3 + Bw + aB)

2

34" W2 4 34w3 + Bw + aB
d@zw W \"\'4 ab = Zero

34(—xe® — ye™®)(xe® + ye‘i‘z))2 + 3A(xe® + ye‘i‘z))3 + B(xe® + ye™®) + aB = zero
34(—xe® — ye ) (xe® + ye""z‘)2 = —3A(xe™® + ye ) (xe® + ye""a)2 = —3A(xe? + ye'i‘a)3
—34(xe® + ye‘i(z’)3 + 3A(xe® + ye‘i@)3 + B(xe® + ye™®) + aB = zero

B(xe® + ye™®) + aB = zero xe® + ye™ + a = zero

—ip

1 .
W=;=xel®+ye = -—a
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§ 30 Energy

In 8§28 simplified calculation of the perihelion retraction we obtain:

rdvr d k =2 .5 1dvr d k
By=["F==[""5=)—5dr dE=Fdi="=="""5=—=dr 28.08
\4 v 2
wE () WE (1)
2 v2 _ mec® _k 2 viZ_k 2
Ex = myc® 1+ == == + constant Er = mqc” |1+ = T = MeC 28.09
NEari
2 3 3
ER—mOCZ_l_(:mOCZ ! 32(1+ k21> =(1+Al) 28.10
V2 r V2\Z mgc* r r
2 (1‘72)

2
In this first variant relativistic kinetic energy is greater than inertial energy m°cz > myc2. This causes
Vv

1-=
C
Mercury's perihelion to recede. The planet seems heavier due to the movement.
rdvr d k
Ek — meVV,‘; =f moV2V§ — f—r—zdl‘ 2808
& (g
_ v mov/dvs vV movdv _ r _5
Ey = v'=zero /1+£ - fv:zero I 3 fr:oo r2 dr
c2 (1_c_2)
v
/2 v 2 kIT
Ek=m0c2/1+vc—2 = ==
v'=zero 1_‘;_2 r=o
vV=Zero
(zero)2 mgc? kK k
Ek=m0c2<’1+v——m0 ,’ [_ { Z - r o
c? (zecrzo) r
2 V’2 2 mocz 2 k 2 vi2 2 IIIOC2 2
Ex = myc 1+C—Z—moc == Mec” = m,C 1+C—22moc = = M,C 30.1
e -z
Defining potential energy as E, = —%: 30.2
2
And applying in 1 we have E, = myc? |1+ Vc—z —myc? == —myc? = —E, 30.3
v
-z
In 3 we have the energy conservation principle written as Ey + E, = zero 30.4
ay princip kT Ep
With 3 the kinetic energy equal to Ey = myc / —myc? = moc® 2 — m,c? 30.5
v
c_Z
n 3 the lowest energy of the system is the inertial energy of rest E, = m,c? 30.6
. . _ 2 v'? _ mgc?
In 3 the highest energy of the system is E=myc” |1+ == = = 30.7
Y3
2 2 2
Now defining p = m°zz =my,v vp= m°‘22 = myvv’ T' = myc? |1+ % T = —m,c? /1 — :—2 30.8
1-= 1-Z
2 2 2
And knowing that E=cymic?+p?= mOCZ = m°vz + myc? [1— Z—z =vp—T 30.9
-5 1%
C
Ifin9 m, =zero So E = cp. 30.10
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Applying 8 and 9 in 7 we obtain the greatest energy of the written system as:

E=c¢/mjc2+p2=T =vp—-T This we have vp=T+T

With 8 and 9 we can write 3 in the form:

12 2 2
v meoVv \'A
Ex = moc? |1+ — —m,c® = 2=+ myc? |1 -5 —myc? = —E,
C 1 v C
NESw
C

Ex=T —Ey=vp—T—Ey =—E,

From 3c we can define the resting inertial energy E; = m, e E; = m,, in the form:

Ey = T' + E, = m,c? and Ey =vp—T+E, = m,c?.
2
Defining Lagrangean as L=T-E, = —myc? /1 - ‘c'—z +lf
. . d (oL oL .
This Lagrangian meetsa (5) = according to §24.
So from 11 temos: Ey = T' + E, = myc? and E, = vp — L = m,c?

In 828 simplified calculation of perihelion advance we obtain:

_ (mgvdv _  mgv/dvr k _ T gz _ movdv _ mgvrdv/ k
k=== 5= [—Zdr dE, = F.dr = == 5 =—odr
1= vI2\2 1= vI2\2
c2 <1+—2) c2 <1+—2>
C C
2 2 2
- _ 2 [q_ Vv _ _ moc® _ Kk _ _ 2 |q v _k_ _ 2
Ex = —myc“ |1 == — =7 + constant Er = —myc* |1 = = —m,C
=
2 3 3
mecC 1 k 1 1
SR = (125 = (1-aY)
H mec? r
12 vI2\2 o
1+V_ (1+—2>
Vi c
mgc?

In this second variant relativistic kinetic energy is smaller than inertial energy =
v/

c2
advance of Mercury's perihelion. The planet really is lighter due to movement.

_ (mgvdv _  mgv/dvr k
B = Ty pmovdy kg,
v s r
1-=Z (1+"’2)2
c s
_ (v movdv (V! mov/dvs T k
Ep = fv:zero vz fv’:zero R fr:oo 2 dr
=
c s
v/
M 2 r
v2 mgC k
Ex = —myc? [1 —= ° =-
c? vr2 r'lr=co
v=zero -z,
v'=zero
v2 (zero)? mgc? mgc? k k
Ex = —myc? |1 —— myc® |1 ——; & | -= =-——
c c )2 (zero)? r )
1+—=F
2 ¢
E 2 [1_" 2y — _ _MoC 2y _
k = —INngC _c2 (moc)_ 2_ _moc)—
14+%,
p)
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30.12
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28.18

28.19

< m,c?. This causes the
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5 v2 5 m,c? , k
Ey = —myc® |1 ——+myc® = ———=+m,c” =~
C v'2 r

1+ i

2 2 k 2 2
Ex = m,c?—m,c? ’1 —Z—Z =m,c? — == == myc? > myc? |1 —:—2 myc? > = -
! !
1+VC—2 1+"C—2
, . . k
Where applying 2 the definition of potential energy E, = -
— 2 2 V2 _ 2 mgc?
We get Ex = myc*—myc® |1 — Z = MeC” — == —E,
1+VC—2
In 15 we have the principle of conservation of energy written as Ex + E, = zero.

Being 15 the kinetic energy equal to:

2 2

— 2 2 v _ 2 mgC
Ex = myc“*—m,c /1—C—2—m0c - -
!

A\'A
1+C_2

In 15 the biggest energy of the system is the inertial energy of rest Ey = m,c?
2
At 15 the lowest energy in the system is E'=myc? [1— ‘C’—Z = 2ot
12
14+
Now defining p == =m,v vp =2 =m,v'v

2 ’ 72
And knowing that E' =cymic2—p2= Li,z =-+ moczﬂfl + Vc_z =-vp' +T

If in 20 m, = zero SO E' =icp’

Proving 20:

2
’ v
E'=myc? |1 == c\/m(z,c2 —-p?= c\/m(z,c2 — (myv)? = c\/méc2 —miv? = mycy/c? —vZ =m,

Applying 8, 19 and 20 to 18 results in the lowest energy of the written system as:

E'=c¢cymjc2—p2=-T=—vp +T This we have vp =T +T

With 19 and 20 we can write 15 in the form:
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2 2 2
_ 2 2 ve 2 mgov/ \% _
Ex = myc®—mqc ’1——c2—m0c t——m }1+———Ep
,[1+c—z

Ex=Eo+T=E,+v'p' - T = —E,

From 15c we can define the resting inertial energy E; = m, e E; = m,, in the form:

Ey = =T —E, = m,c? and Eo = —v'p' + T' — E, = myc?.
/2
Defining Lagrangean as LI'=T —-E, = myc? [1+ VC—Z +];(
oL/ oL/
This Lagrangian meets o (ﬁ) = -, brova no final.
Ey = =T —E, = m,c? Ey = —v'p' + L' = m,c?
Rewriting 11 e 22:
Eo = T'+ E, = myc? and Ey =vp —T+E, = m,c?.
Ey = —T —E, = m,c? and Ey = —v'p' + T' —E, = m,c?.

Equating E, of 11 with E, of 22 we have:

Ey=vp—T+E, = -T—E, =m,c?

This we get vp = —2E,

Matching —E, = ? the kinetic energy of 3b we have:

’ 12 2 ’ 2 2
_ 2 v 2 _ MgV 2 \' 2 _ _Vvp _ 1 myv
Ek—moc 1+C—2—m0C —\/:vz+moc 1—C—2—m0C ——Ep—7—5 -2
1-5 1
c

In 3d we should have:

mgv? 1 mgyv?
2 +m0 ’ —myc? === =
1—— 1-Y-

c2

2 2
2 2 v v 1 2
myv- + mg,C (1—C—2)— ’1—— 7 MoV

1 2 2 2 V2 2 v _
7 MoV™ + mec” —myc” = —mgc 1—C—2—zero

1 v2
;mon + myc? — myv? — myc? ’1 — = = zero

2 2
2(1_1v7) _ 2 1Y _
m,C (1 3 c2) m,C ’1 2 = zero

2 2
The approximation(l — %:—2) = fl - ‘C'—zis the cause of Mercury's perihelion setback.

/ —myc? [1 -2 =zero  Result that proves that E; = 1 m"v
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Equating E; of 11 with E; of 22 we have:

Eo =T +E, =-v'p'+ T — E, = myc?

This we get v'p' = —-2E, —E, = =3 30.26
72
1+Vc—2
Matching—E,, = % the kinetic energy of 15b we have:
_ 2 2 v 2 mgvr? 2 v'? _ _v'p _ 1 myv? d
Ex = myc*—mgc 1—C—2—m0c + =—myc” [1+—=-E; = = 30.15

1 C 2 2
,I1+v—z v’
¢ I+

In 15d we should have:

myc? +
2 2
1 myv v!
myc? + -=—=—m,c? |1+ — = zero
2 2 c?
v
1+c—2

2 v o1 ,2 2 v'?

myc |1+ -5+ mev'™ —mge <1 +C—2> = Zero
2 VIZ 1 12 2 12

my,c“ [1 +C—2+Em0v —myC* —myv "~ = zero

2
v/ 1 cz 2
myc? [1 +C—2—m0c2 —Sm,v'" = zero

12 2
\% 1vr
moc? |1+ —mgc? (1 + Ec_z) = zero

12 12 . . .
The approximation(l + %‘L—Z) = 1+ ‘;—2 is the cause of the advance of Mercury's perihelion.
2 v'? 2 v'? 1 mgvr2
—_ —_ o
m,C /1 + 7 —mecC /1 +— = zero Result that proves that E, = E\/E
c2
From 25 and 26 results vp =v'p’ 30.27
Applying 25 in E, of 22:
_ _ vp 2 ’ vZ 1 mev? _ mgc? 2v? V2
EO——T—Ep——T+7—m0C 1—C—2+E vz_—ﬂ(l_;+ﬁ> 30.28
1-Z 1-=
2 2 2 2
Eo=-T—E,=-T+2=20C (1 )= 20 3 -5 = mc? 30.28
-7 -7
Applying 25 in E, of 11:
Eo=vp—T+E, = 2%" -T- ? =-T+ ? Result already obtained on 28.

Applying 26 in Ej of 11
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B =T 4B, =T — Y% =2 [1 400 —1mov” _ moc? (2w v” 30.29
0~ P 2 o 2 2 2z 2 2c2 2¢2 )
\'4 A4
1+C_2 1+C_2
1o 2 12 2 12
v mgC v mgcC v
E5=T'+EP=T'——‘°=L<1+—2>; 0= 145 =m,c? 30.29
2 v,z 2c v,z c
1+C_2 1+C_2

The approximation that exists in 28 and 29 is the cause of the advance and setback of Mercury's perihelion.

Applying 26 in Ej of 22

I r.r r.r
Ep=—vp +T —E,=—ZF 4T 4= -2 Result already obtained on 29.
Proof that %(%):% L'=T —E, = m,c? 1+_2+‘;<

= () - = (me 1+ )| - 2

v’=%=1/5<’2+5ﬂ2+2’2 ds = |ds| = /dx? + dy? + dz? r? =x* +y? + z*

0 (K 09 -1y (1) 1-1=—2 00 g 1X X or _x
Fx_ax(r)_kax(r ) =k(=Dr ax krzr_ kr3 ax r
F'=Fd+Fj+Fk=—k31-k&ij—kZk=—<(x+yj+zk) = —5f=-=F =19.01

1

1
i) vi2 1 v2\2 1772w v mgyvs Avr
P'ﬁ@(‘“"‘:z 1+c_>=m°czz(1+c—z) 25w = Tadon

2 9x%r vIZ 9x1
1+—2
C

ovr ] \/m) 2 2 e 1=—1 0% X/ X!
—_— = -(x z7'%)2 22 — = —— ==
oxr 0%t ( X2ty +z ( tye s ) oxr xr2+y'242'2 wr

1+—- 2
2 2 1_1—_1 vrdv/
d \ 1 vie\z T 2, vrdvr Zdu 1 vrdw
N PO DY O PR A P A W 1
dtr c? 2 c2 c? dtr vi2 vr2 ¢ dtr
1+ I+

c2

’ dprx d moX/ mg oy v/ dv/
= = — =——IX |1
Fx dtr dtr 1+v12 (1+ﬁ) + vl2 2 dy
2

, _dpix _ d mekx' | _  mg [,( v,z) Ly v dvr
Fy= dv ~ du 1+v12 - 3|X 1+ c X
C

F=Fi+F,j+Fk

Pty (10 2) - 2o [y (10 ) -y 28 o fr (1) - 2]

vr2
(1+%)
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— 2 : -
Fo M fr (145)1 - w28y (142) -y 28 4 (14 2) k-2

dts

=2 m V2N fogn 1 oern | s\ . < a =y vr dvr
F=—e %{(1 +20) (%1 + 57+ #K)i - (% + Y]+ 2K) 55
(1+%7)
Fr=—{( )d_ - wdvg)
- o2 3 cz/dtr 2 du
(1+%7)

With 3d, 6, and 9 we get:

myc? mgv2

Ex=E-E;=T7>-myc?="-+m,? [1-5-—m,c?=-"_="vp
1-v 1= 2 1- 2
CZ CZ CZ
. . v? 4EZ
This we get: z = 2
That applied in 8 results: p = =2 - E; = =/p2—m2v2
- 4Ef 2
Zp?
1
If at 32 m, = zero then: Ex=2=-vposv=c
° 2 2

For a particle with velocity ¢ = Ay and zero resting mass m, = zero we have:
h
E = hy p=7

Applying ¢ = Ay and 34 in 33 results:

From 34 and 35 we have:

E = 2E,

Applying 36 in 30 we have:
Ex=E—Eo— By = 2B —Eg > Bg = B =2

Applying E; = m,c? in 37 we obtain:

With 33 and 38 we get:
Ek=%=m0c2 - p=2m,c

Clarifications

1 mgyv? 1 mgc?

From 30 and 8 we have E, == =-vp,E= ,Eo =myc?, p=

2 vz 2 v2 v2
1 i 1 i 1 i

Let's apply 40 in energy conservation E, = E — E,

_ 1 mev? _ mgc? 1 2 _ 2 v2
Ek—E—E0—>; = = VZ—E0—>Em0v =myc* — E, 1—C—2
1-— 1-

c2
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30.33

30.34

30.35
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30.37

30.38
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Doing at 42 m, = zero we get:

1 _ 2 _ _ 2 V2 V2 _
E(m0 = zero)v* = (m, = zero)c* — E, |1 — =~ —Eo |1 — 3 = zero 30.43

2
Ifin 43 E, = zero » —(E, = zero) |1 — :—Z = zero without any desirable results.

2
Now if in 43 E, # zero » —(E, # zero) |1 —:—jz Zero —>:—2= 1-v=c 30.44

In 44 we get v = c regardless of the value of E, # zero.

. mg _ 2Ex _ E _p
Of 40 we get: I_ﬁ_v_zk_c_z_G 30.45
c2

_f_ﬁ_ 4E12< _czp2
Of 45we get: 7 =— = ap? = B2 30.46

2
But Z—Z =1 of 44 was obtained from the conservation of energy Ey, = E — E, when m, = zero and E, # zero

2 2 2,2
S0 in 46 we should have = = 22k — 2%k _ £ P° _ 30.47
[« E cep E
When we have m, = zero, v = c and E, # zero out of 47 we get
2
:—2 = % =1-E=2E, equalto36 30.48
v2 _ 4Eﬁ _ _cp
@ 1-Ex=- equalto33 30.49
v2 _ Czpz _ _ |
C—Z—E—2—1—> E=cp equaltol10 30.50
Applying 9 and 32 to the energy conservation equation E, = E — E;, we obtain:
Ex=E—-E, - g\/pz—mgvz = ¢y/m2c? + p? — E, 30.51
In 51 doing m, = zero we get:
g\/p2 — (m2 = zero)v2 = ¢\/(m? = zero)c? + p2 —Ey — E, = % =E, equalto 37 30.52
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8§31 Quantum mechanics deduction of Erwin Schrdodinger's equations

Let's start with the equation 8.5:

% xc—/;% = zero 8.5
i) x/ta_i ii__ 29 _ =X
ax | c2 ot ox @ c?at _6x+ = zero ¢= t 311
a 10
a-l'za = Zero 312
The variables involved will be:

h 21
c=Ay P=7 E =hy K=7 w = 2y 31.3

h h h [0 h
p—z—¥—zK—hK E—hy—h;—hw h—z 314
p =hK E=ho E=cp K== w=cK 315
Function construction W:
=y = -icyroioyr= ) (f— t)—'(z—“ ~2 t)—‘(K —wt) = 31.6
c=ly=;->3=7 STyt =zero - i2m(>—yt)=1i(Tx myt ) = i(Kx — wt) = zero 31.
ellkx—wt) = gzero — 1 i=v-1 2=-1 317
Y = Y(x,t) = elkx-wb 31.8
Some derivatives of the function Y = ellkx-ot).
. 2 .
Z—‘f = el(Kx-0t (i) = —ju¥ aaT‘: = (—iw)(—iw)elFx-oY = _,2y
M _ P _ 2
= iwW oz = @ Y 31.9
2% _ eilkr-0tik = Ky W _ eilkr-otkiK = —K2y
ox dx2
v _ . i
5 = iKW = KV 31.10
dv = ax + P e = d(1) = zero » iK¥dx — iwW¥dt = zero — . g 1.13
ax at at K dat ¢t

Applying the function W in 2 we obtain:
a—w+la—w=zero 31.11
ax c dt
9% L 1% _ ikw — Liww = zero K=2
ax c dt c c

Construction of the wave equation:

(6: 1i)x(0‘V: 16“’)ﬁ02_“’:102_“’ﬁ_1<2up=_‘:_jupﬁ1<=2 31.12

ox  cot) " \ex  cot ox2 % at? c

%y 1 9%y

9z 2 gz = Zero Where we have W = W(x, t). This is the wave equation 31.13

Construction of the first Erwin Schrddinger equation using the wave equation:

%y 1 9%y vy 1 2 9%y 2

— —=—=2zero > — — = (—w*¥Y) = zero » — + K*¥ = zero 31.14
ax2 cZ ot2 ax2 cz( ) dx2 +

%2y oY dv

— 4+ K?¥Y = zero Y =Y(x —=— 31.15
dx2 + ( ) ox dx
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2
2 L K2W = zero

dx?
n? a?y  a? n? a’y  a?
——+ —K*¥ = zero ——— ——K*¥ = zero
2m dx 2m 2m dx 2m
h? d?y  h? h? d?y 2
“ o Y = o o ¥ = 7ero p = hK

If at 30.4 we have Ej + E,(x) # zero then we can write £ = Ej + E,(x) = hw.

2 2
Erwin Schrodinger adopted for energy E = zp—m + E,(x) where we have E;, = Zp—m.

2
Of 20 we get —Zp—m =E,(x) - E that applied in 18 results in:
nZ d?y  p? K2 d2y
“amae ¥ = “amaw T [Ep ()~ E]¥ = zero
—ﬁdz—‘y+E( W =E¥ In this we have: ¥ = ¥(x)
2m dx?2 pX - ' B X

This 23 is Erwin Schrédinger's equation independent of time for single dimension.

Construction of the second Erwin Schrddinger equation using equations 14 and 11:

Multiplying 14 by * gives - P22 4 B pags — Jorg

plying y 2m g 2m’ 2m ox2 = 2m -
oY  10¥ v oy . v o

Of 11 we get: —+-—=12zero » c—+—=zero = ciKY +—=iw¥ + — = zero
ax c at aox at at at

. v .. L, OW ., OV
io¥ + 5 = Zero - iihow¥ + lhﬁ = zero » —hwV¥ + lhg = zero

2 2 2
Adding 24 and 25 = (h—ﬁ + g2y = zero) + (—ha)‘l’ +inZ = zero)
2m dx 2m at

2 2 2
MO M kg w4 in?Y = zero
2m 0x2 2m at

2 2 2
LY key— how = —inZE
2m dx 2m at

2
_ Y N kg how = in2E
m at

hzazlle LY 21(2‘{1 ha

2m 0x? @ =t d
~ LY+ (o - k) w = in %Y E=h 2 = w2K?
2m 9x2 w 2m =t at = hw b=

h? 9%y P )
“maer H(E- ) =ih

2 2
From the energy of Erwin Schrédinger we obtain E = f—m +E,(x) > E,(x) =E — ;’—m

Applying 31 out of 30 We get:

2 2
L E,(x)¥ = ih‘z_‘f In this we have: ¥ = W(x, t)

2m 9x2

This 32 is Erwin Schrédinger's equation dependent on space and time.
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§31 Simple Quantum Mechanics Deduction of Erwin Schrédinger's Equations

From 30.8 and 30.3d we get:

p =D 31.33
v
-
mov? 2 1 mgov?
Ex = ==+myc? [1—=—myc? =22 31.34
v2 c? 2 v2
C C

If in both equations in the % ratio the speed of light is considered to be infinite, then we will have FLOO = Zzero
resulting in:

p=myv 31.35
myv? + myc? — myc? = %mov2 - By = %mov2 31.36

This is what happens in Quantum Mechanics, the speed of light has the character of being infinite and
2

therefore Erwin Schrédinger's energy equation E = Ej + E,(x) where we have Ej, = Zp—m presents perfect

results. We should note that at 36 the inertial energy m,c? also disappears.

Function construction Y:

c=§=§—>px=Et—>px—Et=zero—>é(px—Et)=zero 31.37
eiPXED) _ guero _ 1 i=+v-1 i2=-1 31.38
W= W(x, ) = erPFED 31.39
Some derivatives of the function @ = i PrED,

2 _ gitors) (-LF)=-Lgw 2= lpy By = -2 31.40
P — e (LLp) (—Lp) = - L7y 2= Lpwy E2p = 22 31.41

From the total differential of ¥ we obtain:

oy v i i dx E dx x
d¥ = adx+;dt— d(1) = zero - (Zp‘l’) dx + (—EE‘P)dt =zZero o g =o=co =7 31.44

Applying the function W and its derivatives in E = cp and E? = ¢?p? we obtain 31.11 and 31.13:

how h oW ow oW oW | 10W _
E‘P—cp‘}’—>—?5—675ﬁ—5—65ﬁ5+;5—zer0 =31.11 31.45
E?Y = ¢? 2‘P—>—h262—w=cz(—hzaz—w)—>az—w= 2009 %W 10 _ o =31.13 31.45b
p at? dx2 at? dx2 ax2 2 at? ! ’
2
Let's write Erwin Schrodinger's energy equation E = Ej, + E,(x) where we have Ej; = :—m:
_ _r p? —
E =E; +Ep(x)—%+Ep(x)—>Z+Ep(x) =F 31.46

In this we apply the function W and its derivatives:
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p*¥ - ES 2"‘*’
+ E, ()W = E¥ - — ( A )+E(x)‘}’ EY

h? 92y 9%y _ a?y
—%ﬁﬁ'Ep(X)lp—qu Inthis ¥ = q”(X) %2 " axZ

h? d*y

— T E, ()Y = EY

This is 49 is Erwin Schrddinger's equation independent of time for a single dimension.

2

Let's write Erwin Schrodinger's energy equation E = Ej + E,(x) again where we have E; = :—m:

2 2
E=Ek+Ep(x)=2”—m+Ep(x)—>2”—m+Ep(x) =E

In this we apply the function W and its derivatives:

i d _ 1 26 v __ﬁa_l*'
S+ E, ()W = E¥ - ( h )+E W= -3
1 za g ih 0w hZ 92w oW
(- +E v =22 L2y () = in 2
h FEAY ov . . _
— 7 + E,(x)¥ = lh; In this we have: ¥ = Y(x, t)

This 53 is Erwin Schrédinger's equation dependent on space and time.
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§ 32 Relativistic Version of Erwin Schédinger Equation

A particle moving with velocity v along the x axis is associated with an infinite wave in the form:

W= Y(x,t) = Aer® = AerP* Y A = Constant 32.1

For a plane wave of constant phase @ = @(x,t) = px — Et = constant we obtain the velocity u of phase equal
to:

_o9 9 4t — - _ - & _E —E
d@—axdx+atdt—zero—>d®—pdx Edt—zero—>u—dt—p u=> 32.2

The energy E, and the moment p being properties of a particle in motion with velocity v, and the frequency y
and wavelength A being properties of the wave motion associated with the particle. Louis De Broglie listed
these properties in the following equations

mgc? 1
E=hy= = p=hk= = k:X 32.3
From 3 we get the phase speed u:
u=Y—E_¢ 32.4
k p v

In 4 we have m, > zero because if m, = zero then E = cp (30.10) and we would have:

—Y_E_
u=,= = c 325

2
And in 4 the phase velocity would be u = c and not u = % 32.6
As m, > zero then v<c and in 4 we have u>c 32.7
2
Ifat4u= % the phase velocity then ¢ # { because ifat4 c = {then we would have:
2 2

_vy_E_¢_ (& v _ @) N

u—;—;—;—TQE—Tﬁu—V—C—E. 32.8
2
And in 4 the phase velocity would be u = v =cand notu = % 32.9
From 4 we get the velocity v written as:
2
u=Y=E_C ,y—c2P 32.10
k p v E
2
Applying 10 in kinetic energy E, = %vp = % T2 we get to m, > zero e v < c:
ez
1 _1( ,p _1c?p? _1c?p?

Bo=3vp =3 ()P =3~ B3 2
When m, = zero then v = c and we have Eyx = % (30.33) and E=cp (30.10).
Multiplying 30.33 by 30.10 we obtain:
EE = Pcp o By = 1SF 32.12

kb =—-Cp k=37 .

2,2
And we have 11 equal to 12 demonstrating that the equation E, = %% is ambivalent and has general

validity for my, > zero and v < c.

We know from mathematics that the group velocity v, is given by: v, = % 32.13
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From 3 we get the speed in the form:

mgc? v? v2 m3ct m?ct
E=hy=+=- (hy)z(l—c—z) =mjct > 5 = 1_h20y2 sv=c ’1_h20y2 32.14

s

In 14 we have the particle velocity only as a function of the frequency v = v(y).

Deriving the velocity of 14 in relation to the frequency we obtain:

ﬁ_l—m%C4—>ﬁ_1—m%C4 _2_)2_vﬂ__m%c4(_2) _3_)ﬂ_f m3c*
2 h2y2 2 h2 2dqy h2 Y dv h2y3
Y C ¢ dy Y v Y
S () =(me) o mid & mic 32.15
dy v \h2y3 k \h2y3 h2ky2 ~ dy  h2ky2 ’

Deriving the velocity v from 10 in relation to the frequency and considering that k is a function of the
frequency k = k(y) we obtain:

— 2P = 2K -1 v 2 fdk g )yt = 2 (tdk_ k)  dv_ 2 (1dk k|
V—CE—Cy—CkY —>dy—c[dyy +k(—1)y ]—c( )—) —c( ) 32.16

We should have 15 equals 16 so:

dv _ mjc* _ (1 dk k) mjc?2 _1dk k mjc? _dk k _dk _ mjc® | k
dy ~ h2ky2 =~ \ydy y2/ " h2ky2  ydy y2 h%ky dy y dy hZky v
2.2 2.2 2 2.2 21,2 2.2 2 E—
%:moc E_}%zmoc hkk=m0c+hk=moc+p <z _1E
dy  h2ky vy dy  h2ky  h2ky h2ky Ep Ep cZp
dk 1E 1 d
— ==YV =—y=V—)V =vVv 3217
dy c2p v & 4k g

And at 17 we have the group velocity v, equal to the velocity v of the particle.

From 30.9 we obtain:

2
E=c/mjc2+p? > 5—2 = p? + m3c? 32.18

Applying 3 out of 18 and deriving the frequency y with respect to k we obtain:

E? 2 2.2 _ h%y? 21,2 2.2 _ 02, dy 2 dy 2k

== m3c? - =h%k? + m3c? » = 2y—=h?2k » — = ¢?- 2.1

2 =P + mgc = + mgc 2 2Y w=C y 32.19
dy 2k

Vo =—=C°-=V-oOV,=V 32.20

g dk Y g

And in 20 we have the group velocity v, equal to the velocity v of the particle.

The equation E = Ex + E, = % + E, by Erwin Scho'dinger of Quantum Mechanics equals the total energy E

with the sum of the kinetic energy Ey with the potential energy E, functions, to proceed with this recipe it is
necessary to name some functions.

The name of kinetic energy in relativity should only be attributed to differences between energies, the best
examples are:

2
—myc? =E —E, 32.21

2
Ek=m0C _—=E0_E’ 32.22
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Writing 30.3:

/2 2
Ex = myc? [1+ ‘2—2 —myc? = = —m,c? = —E, 30.3
In this denominating Ty the kinetic energy:
T, = myc? [1+ VC;ZZ — m,c? 32.23
2
And it remains as kinetic energy the term B = 2= — m,c? 32.21
ez
In 30.3 we have the exact result: Te = Ex 32.24
The result is exact because applying fl - = fl +Z= = 1 in either one we get the other.
And we have 30.3 written as: Ty = Ex = —E, 32.25

Writing 30.15:

Ej = m,c2 / =m,c? — moc® _ —E, 30.15
c_Z

In this denominating the kinetic energies:

T, = myc? —myc? |1 —:—j and E;, = myc? — m0c22 32.26
1+%

At 30.15 we have the exact result: T, = E;, 32.27

The result is accurate because applyin \/: /1 + i = 1 in either one we get the other.

And we have 30.15 written as: Ty = E, = —E, 32.28

From the kinetic energy 21 we obtain:

2 2 2
mgC mgoVv A%
Ey = == — m,c® = ==+ m,c’ /1——2—m0c2 32.29
N4 N4 C
1-2 1

c2

2 2 2
vp = m°‘;2 = m°cvz —myc? |+ (moc2 — m,c? ’1 - :—2) =Ex + Ty » vp = E, + T 32.30

1-5 1%
2 2 2
Vp=n:0‘;2=n:llocvz_mocz ’1_:_2=E+T_)VP=E+T 32.31
Tz 3

In this vp is the difference between the highest and lowest energy. Therefore, the average kinetic energy
1 myv?
Ek = 2

vp = 1
2P =3 L2
C2

From the kinetic energy 22 we obtain:

is the average energy of the difference between the highest and the lowest energy.

2 12 2
mgC mgov v
Ep =myc? — =—==m,c* + =——-myc’ |1+ — 32.32
2 2 C
v/ i
s ez
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N moV’2 2 V’2 2 2 moc2 ’ ’ 1 ’ ’
vp = == | moc”[1+ 5 —moc” |+ moc” — = [=Te +Ex > vp =T + E 32.33
v/ v/
1+ +=
3N mov’2 2 VIZ moc2 ! ! 3N ! I
vp' = =m,c 1+C2_ =T —-E - Vv'p =T —E 32.34
72 12
145 145

C

In this v’p’ it is the difference between the highest and lowest energy. Therefore, the average kinetic energy

l2 . . .
E, = lv’p’ = 1" s the average energy of the difference between the highest and the lowest energy.
k=5 2 [ V2

2
Comparing 30 with 33 we see that all terms in the sequence are exactly the same so we have:
vp = v'p’ Ex =T, Tk = E, 32.35
Comparing 31 with 34 we see that all terms in the sequence are exactly the same so we have:
vp = Vv'p’ E=T T=-F 32.36

The energies E, and Ty are related by:

mgc? . moc?-mgc? 1—‘;—; Ty
Ex = —mMyC =——F——— Ex = 32.37

2
N4
-3 1-— 1-—

The energies Ej, and T, are related by:

2
!
2 v 2
mgc? [1+—5—mgC
mgc? or e 0 , Ty
_ E;, 32.38

Ep = myc? — =
!
1+‘;—2 1+V_2 1+V—2

N
<

N
<

N

From 25 and 28 we get:

Ex = —E, » Ex + E, = zero Ex = —E, > E; + E, = zero 32.39
Now naming the Hamiltonians H and H’ as:

H=E+E, H =E; +E, 32.40
The Hamiltonians being the total energy of the particle, which by hypothesis is not necessarily equal to zero.
Now we must also define the Lagrangian in terms of kinetic energy.

Now from 30 and 33 we get:

vp = Ex + Ty » Ex = vp — Ty vp =T, +E, > E, =vp — Ty 32.41
Applying 41 out of 40 we get:

H=Ex+E,=vp—T +E, H =E,+E, =v'p' =Ty +E, 32.42
Defining Lagrangian as:

L =Ty — E, = myc® — m,c? 1-2 4k 32.43

2 ' r

/2
L' = Ty — E, = myc? 1+‘;—2—m0c2+§ 32.44
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Applying 43 and 44 to 42 we obtain the relationship between the Hamiltonians and Lagrangians:
H=vp—Tk+Ep=vp—(Tk—Ep)=vp—L—>H=vp—L

H =vp —Tg +E, =v'p' — (T — Ep) =vp -L->H =vp-L

Now to redefine the Hamiltonians let's add H and H’ to 40:
(H=Ex+E,)+ (H =E; +E,) > H+H =E+E; +2E,

Applying T, = E} from 27 to 47 we obtain:

H+H =E+E,+2E, =E  + T, +2E, > H+ H =E + T, + 2E,

Applying 30 vp = Ey + Ty in 48 we obtain:

H+H =Eg+ Ty +2E, =vp + 2E, > H+ H' = vp + 2E,
Now defining the Hamiltonians according to 49:
_1
H = 7P +E,
Hr _ 1 5 E
= EVp + p
These Hamiltonians are H = H’ invariants.

Adding 50 plus 51 we get:

(H=3vp+E)+(H'=3v’ "+Ep) > H+H =2(vp+Vv'p') +2E, = vp + 2E
2 p Svp p 7 VP p p=VP p

And we get 52 = 49,

The Hamiltonian H = %Vp + E, must agree with the Hamiltonian equation v = ‘;—';.

OH a (1 ) a (1 ) 0Ep

— =—|-vVv E =—|-v — = Zero
ap dp \2 p+ p dp \2 p dp

0H a (1 ) 10v 1 dp 10v 1
—=—|-Vp)=-—p+-V—-—=>—p+-vV

dp dp \2 p 26pp+2 dp 26pp+2

Deriving the velocity of 10 v = c? % we have

v _ 0 ( 2P\ _ 20 -1y _ 20D 1 2, 0E™Y) & o n1-1=—20F
ap_ap(c E)_C 6p(pE )_C BpE +Cp dp T E CpE ap
v _¢_ 2 p-1-1=—20 _¢ _ 2P 0F

ap E c°pE ap E ¢ EZ 0p

Now deriving E with respect to p in 18 we get:

9 (B2 _ 24 m2e2) o 2E9E _ EOE_  _OE_ 2P _

6p(c2_p +m0c)—>c26p_ p_)czap_p_)ap_c E_V

Applying 55 and 56 out of 54 we obtain:

0H 1adv +1 1(c® , poE +1 1[c? zp() +1
ap 2opY 2V T 2\E " Ezap)P T2V T2|E B2V P72V

OH 1[c? zp() +1 _1c? 1.,p° +1 1 1v? +1
ap 2| SRV |PTVTREP T YTV TV eV oY
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32.49

32.50

32.51
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32.53
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oH 1 1v? +1 3 1v? _(1 1v?

ap 2° 22 TV TVTaY T\ T2

0H 1v2

%_v(1—56—2)_v 32.57

2
In 57 we consider the term %‘C’—Z = zero or we could consider that the speed of light has the character of being
1_v
2 (c=)2

infinite in Quantum Mechanics (QM) = zero.

Applying the formula 10 of the velocity v = c? % to the Hamiltonian of 50 we obtain:

CZZ 1C22
L tE, ->H=-22
E 2

+E 32.58

=1 =1(.2P =1
H—zvp+Ep—2(c E)p+Ep—2 = p

2,2
And at 58 we have the ambivalent kinetic energy of 11 E, = écé’ .

From 58 we get the value of p:

2E 2 mgc? 2m
= /—H—E = |22 (H—-E.)= [—(H-E 32.59
p Cz( p) \/@ ,—1—:—3( p) \/ [—I_Z_j( p)

In this doing ¢ = co we obtain:
p= / Mo (H—E,) = |[—=—(H-E,) = /ZmO(H ~E,)~p= /ZmO(H ~Ep) 32.60
1—:—2 v?

1 S
In 60 we have the p value of the theory of Erwin Schédinger.

()2

Applying 60 out of 10 we get the particle velocity:
sv= S (H-E,) 32.61
E p )

In what follows the development is approximately the method of the own Erwin Schodinger.

In Hamiltonian 58 applying the Hamilton Jacobi equations to the x axis we obtain:

aS aS as as as as

a—&—p _E_H E——H(q,a,t)——H(x,&,t) 32.62
1 g 1S\t oo 98

H= 0 +E =35 (5) +E =5 32.63

1f(§)z+E L8 32.64

2 E \0x p TG T Z€ro )

For a conservative system the Hamilton Jacobi equations are given by:

as _ s _

ax P Pl 32.65

From 65 it is concluded that the action S can be in the form:

S =S(x,t) = f(x) + g(t) = constante 32.66

Where f = f(x) is a function of x that should result in B _a_ p 32.67
ox ox

Applying g = g e g = —H in 64 we obtain:

lf("—s')2+13 +8 = alf(ﬂ)zw —H= 32.68

2 E \ox p o T 20 7T ax p = zero :

181/200



Now let's make the transformation in 68 f = f(x) = kin¥ 32.69
Where k is a constant.
The f function of 69 has an analogy with entropy.

Applying 69 out of 68 we obtain:

12 (50) + By = = zero > 2SSy gy — H = zero 3210
R

L2 sy ro 5y s

%CZ{Z (5) + (E, — H)¥? = zero 32.71

Now suppose 71 is not null and has a remainder R in the form:

_ v _ 1c2k? _ 2
R=R(¥5x) =15 (E) +(E, — H)W 32.72
The rest R must be a minimum so it must meet the functional:

[*7R (w2 x) dx 32.73

And we get from the Euler Lagrange equation of the functional:
R 9| or a [1c2k? (ow\? 2 a  [1c2k? fow)? 21
ﬁ - a[a(%lp)] zero — Py [2 - (a) + (E H)q” ] a—x{a(a ) [E E (a—x) + (Ep - H)Lp ]} = zero

;b?ea+m—mw]MQ%Efea+w—mwBﬂmrmv—rﬂZ(n

zero
ic k2 1c%k% 9%y 1c2k? 929
28, — )Y - - [ 2 (5)] = (Bo - )® =550 = =355 + (Bp — H)W = zero
1c%k? 929 1c2k? 929
R (Ep—H)‘P—Zero—>—5Ta -+ E,¥ = HY
_1c%k? 9%y
~ - +E,¥ = HY 32.74
2 2
In 74 we have ¥ = W(x) » 2w = 2% 32.75
dx dx
1c%k? 929 1c2k? d?y
I F-I_E Y =HY - S W+EP‘P—H‘P 32.76
2
Applying the energy E = 2= in 76 we obtain:
1c2k? d?y 1 c?k? d?v 1 k? d?y
IS AR Y S HY 5 oS T B W = HY o o o+ B = HY 3277
v2 1_ﬁ
- 2z
Making in 77 ¢ = oo we obtain:
2 2
—%x’;—“’ﬂaw HW—)—%,’;—Od‘P+ELP H‘P—)—lk—‘;;+E‘P HY 32.78
v2 v2 o
1_c_z _(c=oo)2
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Now in 78 making k equal to Planck's constant k = i and replacing H with E because now it doesn't cause
any more confusion:

22
1T R = Hlpﬁ—lh—d\: E,W = E¥
2mg dx dx
2
h Ol"’+Elp EW 32.79
Zm dx?2

And we have 79 equal to Erwin Schodinger. equation 31.49. The method used in this work is approximately
the one used by Erwin Schédinger.

8§33 Hyperbolic Relativistic Energy
Next, we will conclude that relativistic energy is a hyperbolic function.
From the energy of 30.9 we obtain:
E = ¢\/p? + m2c? 33.1
E? = ¢?p? + m3c* - E? — ¢?p? = mic* 33.2
(E + cp)(E — cp) = myc?. myc? 33.3

(E+cp) (E—cp)
mgc2 * mgc?

=1 33.4

In this denominating:

m()C cmgv

v2
e? — (E+cp) _ K CZ) 1 % 1+% EH—%% 33.5

met = et T e 00

/(HX)
@=1In < 33.6
(1-3)

ey \% 2 v v (1)
e =2 = = <= < = [3— 33.7

me? T mee? [ [ G0y ([(16)
g =mn| U= 33.8
(1+)
e®.e™® =1 thatis in agreement with 4. 33.9

Now calling the hyperbolic cosine (ch) as:

(VPR ] 2
e’+e 1 [(E+cp) (E—cp) E 1 mgc 1
x = chp = =& Dl - _E 0 33.10
2 2 | mgc? mgc? moc?  mgc? v2 v2
1-% 1-%
C C

And naming the hyperbolic sine (sh) as:

9_o-9 v
e’—e 1 [(E+cp) (E-cp) C 1  cmgv
y = shp = =R _Ep . 2 e ot 33.11
2 2 L myc? mgc? mgc2  mgc? v2 v2
1-% 1-7

To prove that cosine and sine agree with the hyperbola equation let's make cosine equal to x and sine equal
to y of the hyperbola equation 12:

x2—y?=1 33.12
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2 2 2_¢2p2  p2ct
) ~ () =T =i =1 33.13

mgc? mgc? m3ct m3ct
2 2
v V2 1 VZ
1 < 1 2 Y
— | | =] =—-—"—"5=—5= 33.14
v2 v2 1_V_ 1_V 1 v.
1-—— 1-— 2 2 2

D=0
x=chp = "= — = —— > zero 33.15

So there is no negative energy.

Now defining the hyperbolic tangent, secant cotangent and cosecant have:

cmov
2
cp P
shp  e®—e® o2 cp 2 v
th = —= = 0 = == = - 3316
Q cho eP1e=0 E > E mgc? c
mgc )
1-7
mgc?
E V2
chp _ eP4e? 2 E c2 c
cothg = — = G0 mé);;: = = Tmgv — _ 33.17
shp e¥—e > cp \4
mqgcC 1_ﬁ
oz
1 2 1 mgc? mgc? v2
sech) = —=——== = = = [1—= 33.18
0 chp  eP+e=? E 5 E mgc? 2
moc 1_ﬁ
2
1 2 1 mgc? mqc2 c v2
cossechp = —=——==—g-=——=-mgw =-.[1 -3 33.19
shg eP-e > cp 4= v c?
mgcC V2
1-3

Trigonometric Functions < Hyperbolic Functions
Construction of relationships that transform hyperbolic functions into trigonometric functions.

The Pythagorean formula for a right triangle with hypotenuse “h” and side “a” adjacent to angle « and side
“b” opposite angle «a is:

h? = a? + b? 33.20
For this triangle we have the following trigonometric functions ft = ft(a) with angle a:
a = h.cosa b = h.sena 33.21

Reshaping the Pythagorean formula gives:

R=a+bh2>b?=h—-a?=(h+a)(h—a) - (“b#) (’%“) =e% 0 =1 33.22
This is divided into the following hyperbolic functions fh = fh(@) with angle @:

e? = h:fa > zero 33.23
e ® = hb%a > zero 33.24

Where applying the trigonometric functions we obtain fh(®) = ft(a):
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h+a h+h.cosa 1+cosa
e =—""= = 33.25
b h.sena sena
— h—a h—h.cosa 1-cosa
e P =""= = 33.26
b h.sena sena

The real equality of the functions fh(®) = ft(a) only occurs if the angle of the hyperbolic function is equal to
the angle of the trigonometric function, that is, if fh(@) = ft(@) where both are hyperbolic functions or

fh(a) = ft(a)
where both are trigonometric functions.

From trigonometry we have:

a\ _ 1l-cosa _ sena __ |l1-cosa
tg (;) T sena  1+cosa \’ 1+cosa 33.27
Applying 27 we obtain the fundamental function of the trigopnometric angle « as a function of the hyperbolic
angle @, a = a(@):

¢ _ ltcosa 1 1 _ 1+cosa
e? = = = = 33.28
sena tg(%) 1-cosa 1-cosa

1+cosa

e_@ _ 1—-cosa =tg (g) _ ’l—cosa 33.29
sena 2 1+cosa

a = 2arctg(e™?) 33.30

The substitution of the angle 30 @ = a(®) in the trigonometric functions transforms it into hyperbolic functions
with the necessary restrictions of existence, in the following form:

fR(®) = ft(a) = ftla(®)] = ft(®) - fh(D) = ft(D) 33.31

From 28 and 29 we obtain the fundamental formulas of the hyperbolic angle @ as a function of the
trigonometric angle a, @ = @(a):

In(e?) = In [@] 5P =0()=In [ﬁ] 33.32

2

— a a 1
in(e™®) = tn[tg (£)] » —0 = in[tg (%) » 0 = 0(@) = In [ﬁ] 33.33
The functions (30) a = a(®) and (32) @ = @(a) are inverses of each other.

The substitution of angle 32 @ = @(«) in the hyperbolic functions transforms it into trigonometric functions
with the appropriate existence restrictions, in the following form:

ft(a) = fh(®) = fh[#(a)] = fh(a) - ft(a) = fh(a) 33.34
In the unitary hyperbola x* — y? = 1 applying the functions x = ch@ and y = sh@ we get:

x? — y? = ch?@ — sh?@ = (ch® + sh@)(ch@® — shp) = e®.e™® =1 33.35
Breaking it down into two functions yields the hyperbolic cosine "ch@" and hyperbolic sine "sh@" functions:

Dy ,—0
ch® + sh® = e® > x = chp = % 33.36
P _o—0

2

chg —shg =e™® -y =shg == 33.37

In 36 and 37 we have the fundamental properties of the hyperbolic functions.

Applying to the hyperbolic cosine ch@, the previous variables are obtained:
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1
=—-= = = coseca 33.38
b h.sena sena

2 2

b b

_e%4e? 1 (h+a h—a) h h

Applying to the hyperbolic sine sh@, the previous variables are obtained:

9_p-0 -
y=shp =" = l(M - h—a) =4 heosa  cosa cotga 33.39

2 2 b b b hsena sena

Applying the hyperbolic cosine x = ch@® = coseca and the hyperbolic sine y = sh@ = cotga to the unitary
hyperbola equation x? — y? = 1 we get:

x? —y% = ch®@ — sh?@ = cosec?a — cotg?a = 1 33.40
Which is a result of trigonometry.

With the relations of the hyperbolic cosine ch® and the hyperbolic sine sh@ we can define the other relations
between the trigonometric functions and the hyperbolic functions:

sh® _

tgho = o E = cosa 33.41

he 1

. 1
cotgh® = o = EZ,E% =——=seca 33.42

hg = — = ——= 33.43
sech® = —— = <= sena :
1 1 sena

cosech® = e = ﬁ = - tga 33.44
sech?( + tgh?® = sen’a + cos?a = 1 33.45
cotgh?® — cosech?@ = sec’a — tg?a = 1 33.46

Construction of the already known relationships that transform the hyperbolic functions into the exponential
form of a complex number.

Next, we will use Euler's formulas:
e'® = cosa + isena e = cosa — isena 33.47

Reshaping the Pythagorean formula, we get:

h? = a? + b? = a® — (ib)? = (a + ib)(a — ib) — (‘”T”’)@ =e% 0 =1 33.48

This breaks down into the following complex hyperbolic functions:

¢ _ atib

> zero 33.49

—¢ _ a-ib

e > zero 33.50
For this triangle we have the trigonometric relations:

a b
5 = cosa . = sena 33.51

Applying trigonometric relations, we get:

a+ib a .b .
e? = =-+4i- = cosa + isena 33.52
h h h
_ a—ib a .b .
e ? = o =5 — i, = cosa—isena 33.53

To conform to Euler's formulas we must change the hyperbolic arguments to @ = ia and thus we obtain the
hyperbolic functions written as the exponential form of a complex number:
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e? = e'® = cosa + isena 33.54
e ® = e = cosa — isena 33.55
Calling the cosseno chia hyperbolic complex as:

el o—ia
2

x = chia = = %[(cosa + isena) + (cosa — isena)] = cosa 33.56

And naming the sine shia hyperbolic complex as:

y = shia = = % [(cosa + isena) — (cosa — isena)| = isena 33.57

Applying the cosine x = chia = cosa hyperbolic complex and the sine y = shia = isena hyperbolic complex
in the equation of the unit hyperbola x? — y2 = 1 results:

x? —y? = ch?ia — sh?ia = cos?a — i’sen’a = cos’a + sena =1 33.58
Which is a result of trigonometry.

With the relationships of the hyperbolic cosine chia = cosa and the hyperbolic sine shia = isena we can
define the other relationships between complex trigonometric functions and complex hyperbolic functions.

Construction of relationships that transform hyperbolic functions into trigonometric functions similar to those
that occur in Gudermannian functions.

The Pythagorean formula for a right triangle with hypotenuse “h” and side “a” adjacent to angle a and side
“b” opposite angle «a is:

h? = a? + b? 33.59
For this triangle we have the trigonometric relations:
a = h.cosa b = h.sena 33.60

Reshaping the Pythagorean formula gives:

R=a+b?>a?=h—b2=(h+b)(h—b)— ("ai’)(%) —ePe B =1 33.61

This is divided into the following hyperbolic functions:

ef = % > zero 33.62

e B = ? > zero 33.63

Where applying the trigonometric relations we obtain:

eﬁ — h+b — h+h.sena — 1+sena 33.64
a h.cosa cosa
E_B — h-b — h—hsena — 1-sena 33.65
a h.cosa cosa
From these we obtain the fundamental formulas of the hyperbolic angle g:
BY — 1l+sena _ 1l+sena
ln(e ) - ln( cosa ) - h= ln( cosa ) 33.66
-B) — 1-sena _ 1-sena
ln(e ) - ln( cosa ) 2 h= ln( cosa ) 33.67
Denominating the hyperbolic cosine chf as:
eP+e P 1 (n+b h-b h h
x =chf = = —(— —) =-= = = seca 33.68
2 2\ a a a h.cosa cosa
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And calling the hyperbolic sine shf as:

B_e—B -
y=Shﬁ=e e zl(h+b_u)_é_h.sena=ﬂ=tga 33.69

2 2 a a a h.cosa cosa

Applying the hyperbolic cosine x = chf8 = seca and the hyperbolic sine y = shff = tga to the unitary
hyperbola equation x? — y? = 1 we get:

x? —y? = ch?B — sh?p = sec’a — tg*a =1 33.70
Which is a result of trigonometry.

With the relations of the hyperbolic cosine chf and the hyperbolic sine shf we can define the other relations
between the trigonometric functions and the hyperbolic functions:

tghf = % = 052 = geng 33.71

cotghf = % = 53_53 = Se;a = coseca 33.72

sechf3 = ﬁ = 1 = cosa 33.73
1 1 cosa

cosechf = v ﬁ = ona = COtga 33.74

sech?f + tgh?p = cos?a + sen?a = 1 33.75

cotgh?B — cosech?B = cosec’a — cotg?a =1 33.76
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834 Hyperbolic equations similar to Paul Adrien Maurice Dirac's equations
In what follows we are always dealing with the free particle E, = zero.
Writing the relativistic energy equation 30.9:
E = c¢y/m2c? + p? - E? = ¢?p? + mic* 34.1
E? = c?pg + c®pj + c?pZ + mjc* p® = p% +p; + p7 34.2

2
= pZ+p2+p2 + m2c? 343

2
Dirac proposed that the product of the two following equations results in 3.

= o4 px + APy + a3p, + amyC 34.4

o lme |m

= 1Py T 0Py + Az3p, + AuMgC 34.5

Making the 4x5 product we get:

EZ
pe) = 0301 PxPx T 001 PxPy + Q30 PyxP; + MoCAL0 Py + O3 A PxPy + APy Py +
Q30 PyP; + MoCa 0Py + O 03PxP, + A 03Py P, + Az03P,P, + MoCALA3P, + 34.6

M C0Ly 0Py + MG CA, 0Py + MoCAZ 0P, + M CMHCO, 0.

For 6 to be equal to 3, you must meet the following requirements:

i=k-al=at=1 34.7
i+ k- aa, +apa; = zero 34.8
Breaking down product 6 into two equations we get 9 and 15:

p® = & PxPx + Q20 pyPy + AzQ3p,p, + (apaq + 0‘10(2)pxpy +
(azaq + o a3)pxp, + (A3, + 0 03)py Py 34.9

In this case, if the matrices that represent the a, are in accordance with 7 and 8, we will have:

o0 + a0, = zero 34.10
o304 + a 03 = zero 34.11
030, + 0,03 = zero 34.12
00 = 0,0, = 0303 =1 34.13

Com isso resulta de 9:
p® = p: +p;y +ps 34.14
The rest of product 6 is:

mgc? = (a0 + ayay)pemoc + (a0, + azay)pymoc + (aua5 + o30)p,mge 34.15
+a,0,mgecmgC.

In this case, if the matrices that represent the a, are in accordance with 7 and 8, we will have:

o0 + a0, = zero 34.16
0,0, + 0,0, = Zero 34.17
0,03 + 0304 = Zero 34.18
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34.19

1

AyQy =

This results in 15:

34.20

m2c? = mycmyc

And the final result is 6 equal to 3.

The so-called Dirac o, matrices are:

— N ™ <
N N N N
< < < <
™ ™ ™ ™

— 0004. 4.000

Sow o °°

coco PP ow°°
coo —
a— — - O
= =E=) | @< S 1ee o<
—

oc—-oco o~=° “oS 2 292
Il Il Il Il
— o~ on <
S S S S

Let's do operations 10 to 13

To) ©
N N
< <
™ ™
coco’] oco°
co..o ©ooTo
©"co o JToo
Tooo ..o
I Il
SCoHSO oo—O
coco o "~
coo
—“—ocoo
===
oo o
[ ]
o ~0 0
— e
So-Ho
coco
coco o
| @22 ~ocoo
o ~9 9 o —Ho o
I Il
- o~
=] =]
o i
=] =]

34.27

© o
N N
< <
™ )
co™ < 001_AO
0001_. cog
oo ﬂOOO
O1_AOO o oo
Il Il
Sow o Soo
coo —
oo
- o
—“ oo o
—
o-oo 2 1°°
e
—_— oo
—
coco Y 0o
[—
oo So— o
- o
coco o
—
©1°° 4docoo
—“o0®° oconwoo
Il Il
i o
e} =}
o™ i
] ]

34.30

34.31
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34.32

34.33

< 0 ©
< < <
%) %) ™
[
coo -
[
coo -
co-o
[r—
Scow °P°7° o aoo
co-o °7°° _Lococo
L ——
oc-oo TSe°e2 Il
Il
—“ocoo 0001_A
e—
I co™ @
SCo-Oo Qoo |
—
_ ocToo
coco - [coo |
oo
“ooo _ oo TS
oO-HOoOO @ —m i —
o 2 S —
—— So-o coco
co- o
coco T CCao
coo -
o—t 0100
—ocoo | e |
ocHoo ©~°2° 1000_
Il Il Il
i o~ o
o] S o]
i o o
o] o] ]

And the requirements from 10 to 13 are fulfilled:

Let's do operations 16 to 19:

N~ o]
™ ™
<t <t
™ ™
" so O1_AOO
—
| @0 o oo
0001_L co° ™
—
0010_ co’ o
Il Il
co— o 4.000
coco - o oo
== =)
=)
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e
—— ooo7
| ©o o
—
ce SO0 —o
o -
coco -
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e e ===
—
cceo | o —o o
Il Il
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S S

34.39

o -
< <
< <
™ ™
—
© loo
[
S~-~oo Tooo
-~ o0 o -
co® |
coco ~
c o=
co~o | <
1] 1]
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A_IA 1
coc o —
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— o .~
o o | oo o
i
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1] 1]
o~ <+
S S
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S S

34.42
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Il Il
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01_AO o™
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co™ 1_AOO
ooo oo °
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™ <
] =]
< ™
=] [
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0 0 0 1 0 0 0 -1 0 0 0 O
R E N R I
-1 0 0 O 1 0 0 0 0 0 0 O
0 0 0 —-13r0 0 0 -1 1 0 0 O
|10 0 1 0|0 O 1 O0O|_f0 1 0 O
“%=1op 1 0 oflo 1 o 0“[0 010 34.46
-1 0 0 04L=1 0 0 O 0 0 0 1
And the requirements from 16 to 19 are fulfilled:
Therefore, applying requirements 7 and 8 on the product results in 4x5 = 3:
2 2 2 2 2.2 E E
c—2=px+py+pz+moc ={;=a1px+a2py+a3pz+a4m0c}x{;=alpx+a2py+a3pz+a4m0c} 34.47
In matrix form the 4x5 product is equal to:
00 a0 0g0a3 00y 1[ Px
EZ _ 0,0 00, Op03 Oy0y Py
C—z_[px Py Pz myC] WGy @, apas  aag|| p, 34.48
00 040 0z 00 d [mge
In this we have:
o o0 00 Q03 00y
Ay _ %0 Gy 003 00y
o [ 0y az Q4] = Az a0y, sl O30 34.49
Ay Qa0 gy 003 040y
And applying 49 out of 48 we get:
o4 Px
2
lj_zz[px Py p, myC g; [, ap a3 o] gi’ 34.50
Oy mg,C
Breaking apart we get 4 or what is the same 5:
o
§=[px Py P, mgC] g; = 1Py + APy + 3P, + azmpC 34.51
Oy
Px
§=[0‘1 0 Q3 04 By = o, px + a;Py + 3P, + aymgC 34.52
VA
mgC
Isolating the energy in 52 we obtain:
E = a;cpy + aycpy + azcp, + aymyc? 34.53
Let's apply the matrices o, to 53:
01 0 0 0 —-i 0 0 1 0 00
— 2_11 0 0 O i 0 0 0 0 -1 0 0
E = a;cpy + azcpy + azep, + azcmpe” = 00 0 1ch+ 00 0 ipr+ 00 1 0 cp, +
0 01O 0 0 -1 0 00 0 -1
0 0 0 -1
0 0 1 O 2
0 1 0 0™ 34.54
-1 0 0 O
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01 0 O 0 -i 0 O 1 0 0 0 0 0 0 -1

_|1 0 0 O i 0 0 0 0 -1 0 0 00 1 0 2

E=1o 0 0o 1|®»T|o 0o o i|®*|o o0 1 o|PT|o 1 0 o]|™F 34.55
0 01 0 0 0 —-i O 0 0 0 -1 -1 0 0 O
On this one we must write everything in matrix form:
2

E] [0 1 0 O1fPx] [0 —i 0 O07[Py] 1 0O 0 07[CP: 00 0_1[m0c2]
E|_[1 0 0 offcpx],|i 0 0 0]|°Py 0 -1 0 0 |]|¢P: 0 0 1 0 [|meC
E[Z]o 0 o 1fepe|T|0o 0 o i|leoy[T|0 0 1 of|p|T|0 1 0 0{mycz|3*®
El lo o 1 olleped Lo 0o —i ollcpy 0 0 o —ulepd -1 0 0 ol], 2
In this replacing the following quantum operators we obtain:

a ., 0 ., 0 .. 0

E—H—lﬁa pX——lh& py——lfla—y pZ——lfla 34.57
in o —ihed —ihcZ —ihe 2
|[l at |[ 1hcaX| | ay |[ 1hcaZI .
lp2l [0 1 0 0f o) [0 =i 0 Oy _jeof y1 0 0 03 . o [0 0 0—1[0
[Motj=[1 0 0 of| ™|, [i 0 0 0 av[ 10 =1 0 0 7™ |0 0 1 0[moc’|a,eg
|ih3 0 0 0 1|—ihci 0 0 O il—ihcil 00 1 O |—ihci 0 1 0 0 ||mgc ’

ol 1o 0 1 O I Lo 0 —-i 0 dy 00 0 -1 0z —1000[
e | I s moc

ih— —ihc - l—lthJ —lneo
By respectively multiplying each level by ¥,, ¥,, ¥5, ¥, we obtain:

L, 0 0w, _ip 0% Lt
[1 ?] 0100 [_mCK] 0 —i 00 [ lhcatz 1.0 00 [_mCE 0 0 0 —19[moc®¥]

in L2 —inc 2 . —ihc—2 —inc 2z 2
| Bt| 1000| ox i 0 00 ay |, |0 -1 00| azl 0010|moc4’2 34.59
in®s 0 0 0 1 -ha&+0001_-h& 00 1 0 -h&+0100|mc2wl )
|163§| 0010|1C£< 00—10|1C;g| 0 0 0—1|1Caawz -1 0 oo[mzczq,z
[in =] [—inc =+ | -ihe T |—irc =]
From this matrix product the following Dirac equations result:
in 0% _ _p (02 0% | 0% _ 2
in prae lhc( . 3 + az) myc“Y, 34.60
iR W2 _ i (0%1 0%1 02 2
in 22 = —inc (%2 + - 2) + moc?W¥,s 34.61
%5 _ _ino (0¥ (9% 0%s 2

prae 1hc( x+lay+ Z)+m0c v, 34.62
9% ihe (2¥s _ 9% _ 0%a) _ 2

) inc (2 - D4) — moc?¥,y 34.63

Hyperbolic equations similar to Dirac's equations 60 to 63
In what follows we are always dealing with free particleE, = zero.
From the 30.9 energy equation we obtain:
2

E = ¢/p? + m3c? - ];:—2— p? = mjc? 34.64
2
S —p?=mjc? = (Z+p).(5=p) = mec.mgc 34.65
E E
En) (7)o o0 - g 34.66
mpC  mgpcC
That broken down into two equations results:
o= P+ moce 34.67
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% = —p + myce? 34.68
In these applying p = a;px + azpy + azp, 34.69

Note that the hyperbolic coefficients e® and e~? already break the term m2c? into two fractions, making the
coefficient a,. unnecessary.

% = 03Py + QyPy + 3P, + myce™® 34.70
% = —aypy — APy — azp, + myce’ 34.71
The product of both should result in:

E2

= =P+ mjc? = p} +p +p} + mic? 34.72

c2

Let's make the 70x71 product:

EZ
C_Z = —0; 0 PxPx — A0 PxPy — A303 PxP; + mocewalpx — 01 0 PPy —
0 0 Py Py — 030, PyP, + mocewazpy — 01 A3PxPz — X 03Py Pz — 34.73

(0] _ -9 _ -0 —
Q303p,p, + Myce”azp, — mMoCe™ "0y Py — MoCe™ " Py
myce ®a;p, + myce®myce?.

Breaking down the product 73 into two equations X and Y we get 74 and 82:

X= —0; X1 PxPx — APy Py — A3U3PzP7 — (a20‘1 + O‘1(x2)pxpy -
(azay + aya3)pgp, — (a3, + a03)py P, 34.74

The remainder Y of product 73 is:
Y =myc(e® — e™®)(aypy + aypy + azp,) + moce®myce™®. 34.75

From 33.11 we get:

0_e-0
sh = —"—=-"-5 2p = myc(e® — e7™?) 34.76

2 mgc?

In this applying 69 we obtain:
moc(e® — ) = 2p = 2(aypy + APy + A3p,) 34.77

Applying 77 out of 75 we obtain:

Y= Z(alpx + apy + a3pz)(a1px + aypy + a3pz) + myce®myce®. 34.78
Making the product we get:
Y = 2(0ypx + aypy + a3p,) (01 px + azpy + azp,) + mpce®myce™? =

2 0101 PxPx + X0 Py Py + A303p,P, + (04 + 0‘10(2)pxpy + @

+ myce®myce?. 34.79
(azoy + aqa3)pkp, + (aza, + O(20‘3)pypz 0 0

Y = 20404 pxpx + 20,0,PyPy + 20303p,P, + 2(az04 + a3 0;)pgpy +
2(az04 + ay03)pyp; + 2(az0, + aza3)pyp, + myce®mgyce?. 34.80

Adding 80 and 74 we get:

E2

2 X+Y = —a;04pyPx — Az0;PyPy — A303P,P; — (ap0q + O(10(2)pxpy — (0301 + aya3)pyp, — (aza; +
O(20‘3)pypz + 20,04 pxPx + 20,0, Py Py + 20303p,P, + 2(0p0q + 0‘10(2)pxpy + 2(az304 + ay03)pyp, + 2(0za; +
a,a3)pyP, + moce®myce™ 34.81
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Simply put, we get:

E2

myce®myce?

For 82 to be equal to 72, you must meet the following requirements:

i=k-al=at=1

i+ k- aa, + ara; = zero

To meet the requirements of 83 and 84 we must have:
o0 + a,a, = zero

oz0 + a3 = zero

az0, + a,03 = zero

0 = 00, =030 =1

That makes 82 equal to 72:

EZ

C—2=p2+m§c2=p§+p§+p§+m§c2

The so-called a;, Pauli matrices are:

a=[]
o

L0
%=1 —1]

Let's do the operations from 85 to 88:
wa=[i G ol=[o il
wa =[] ollf Sl=l 5

wa e = [ O+ 0]=[° ¢
wa=lg ) ol=1% o
war=[§ ollg =10 3
e I R S el P
wo=[g O S1=1% 3
O O | P B
wa o =% 1[0 o] =[g g

wan=[3 oIy ol=lo ¥

—
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= = 0 PxPx T APy Py + A303P,P, + (a0 + oy 0)pkpy + (0304 + a1 03)pyp, + (030, + 0 a3)pyp, +

34.82

34.83

34.84

34.85

34.86

34.87

34.88

34.89

34.90

34.91
34.92

34.93

34.94

34.95

34.96

34.97

34.98

34.99

34.100

34.101

34.102



o | ) Y
0(30(3=[(1) _01”(1) _01]=[(1)

Therefore, requirements 83 and 84 are met and we have:

E2

E —
——p +mjc? = pZ + pZ + pZ + mic —{;zalpx+a2py+a3pz+m0ce¢

moce@}
Isolating energy at 105 we obtain:
E = aycpy + aycpy + azcp, + moc?e™

E = —0ycpy — apCpy — 03Cp, + myc?e?

Let's apply the matrices a; and the matrix | to 106 and 107:

0 —i 1
E—alcpx+a2cpy+a3cpz+m0ceQ’—[ 0CpX+[i O]pr+[0 _1

34.103

34.104

E
}X{; = —01Px — APy — A3Pz +
34.105

34.106

34.107

]cpZ + [0 1] myc?e™®  34.108

_ _ _ 2.0 _ _ [0 —i 1 o 1 0 2.0
E = —a;cpy — azcpy — azep, + moce” = 0 Cpx [ O]cpy [O _1] cp, + [O 1] mgyc-e 34.109
0 1 —i 1 0 1 0 _
E=[] olepx+ [i 0 ] cpy + [0 _1] cp, + [0 1] mycZe? 34.110
_ [0 1 [0 —i 1 o o
E= [1 0 CPx [i 0 py [0 1] cp, + [0 1] mgc2e 34.111
On these we must write everything in matrix form:
A S [ P 5 R R sa112
E 1 CPx 0 1LC¢Py 0 —111L¢p; 0 1 mocze_q) '
E1_ 10 CPx 0 —i|[¢Py1 1 0 7[CPz myc-e
[E] N [1 [Cpx] [ 0] [cpy] [0 _1] [sz] [ ] [moc o? ] 34.113
In this replacing the following quantum operators we obtain:
E=H=ihs Py = —if2 py = —ihaiy p, = —ih— 34.114
[, 0] . 9 s .
lha 1] —lhcg 4 [0 —l] ihc ay N [1 0 ] —lhca [1 0] mOC e~ T
5 0 0l ;52 i 0 0 0 —1|_i5.9 0 1 '
ih— —ihc— —inhc —1hc myc?e”
L Ot ax
[, 9] ., _ ., 0
ih _ [0 11| —ifc o, ~ [0 —i] ihco _ [1 0 ] —ihc—- N [1 0 [moczem] 34116
ih% 1o —ihc% i 0l jpel 0 -1 —ihc% 0 11 [moc?e®
By respectively multiplying each level by ¥,, ¥,, ¥;, ¥, we obtain:
0w, ] ., 0¥ alP
inSz| M0l jpeZ2) L a"’z 0 —1 ik Ca;;z 0 1 myc’e W,
[, 0W3] ., 0W3 TN ) atp3
ih—= _ [0 17| ~ihe—- ~ [O —i] ihc— [ —ihc—= [1 0 [moczew‘l’g] 24118
ih—= a\y4 10 —ihc% 0 —ihc% 0 =i ca:; 0 1l [moc?el,

These matrix products result in the following hyperbolic equations:
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= —ihc (% - i% + %) + mycZe ™Y,
= —ihc (a% + i% - %) + myc?e Y,
= —ihc (—% + i% — 66%) + m0C2e¢1y3
= —ihc (— % — i% + %) + myc2e®V,
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§ 35 The Geometry of Transformations by Hendrik Lorentz
Let us consider two functions f(@) = n and g(@) = p inversely proportional in the form:
f(9).g(@) =n.u=1 35.1
That applied to the unitary hyperbola x? — y? = 1 results:
X2—-y?=x+y)x-y)=nu=1 35.2

Breaking down 2 we can define the hyperbolic cosine x = ch® and the hyperbolic sine y =sh@ in the
following form:

x+y=n—>x=ch®=l(n+u)—>A
2 35.3
x—y=p->y=shp=-Mm-w->B

Where we add A+B to get the ch@ and subtract A-B to get the sh@.

The hyperbolic cosine x =ch® and hyperbolic siney =sh@ functions are the fundamental hyperbolic
functions.

Applying x = ch@ and y = sh@ to the unitary hyperbola x? — y? = 1 we obtain the inverse functions:

2 2 2 2 1 2 1 2

x* —y%* =ch*’@ —sh (2)=[E(n+u)] —[E(n—u)] 35.4
2_ 02 — 20 _ oh2 — 12,1 12 12,1 _1.

x* —y* = ch*@ —sh (25—41] +42nu+4u l +42nu I
xz—yz=ch2(b—sh2(b=%2nu+%2nu=n.u=1

x> —y?=ch?¢—sh?p=n.u=1 35.5

The sum of ch@ and sh@ results in n and the subtraction of ch@ and sh@ results in p:

chg +shg =2 (1 + 1) +3 (0 — ) 35.6
1 1 1 1

ch@ +sh@ =-n+-p+-n—-p=n

ch® + shg =1 35.7

ch@ — shg =§(n +1 —%(n -W
1 1 1 1

ch® — sho =ontou—ontop=p

ch® —shp =p 35.8

So for two functions to be hyperbolic it is only necessary that they are inversely proportional in the form
f(@).g(@®) =n.p=1

We can construct with the unit hyperbola x? — y2 = 1 a right triangle described as follows:
x?—y?=1-x?=y?+ 1% = h? = a% + b2 35.9

In this triangle we have the hypotenuse h equal to x, the leg “a” equal to y and the leg b equal to 1.

With 3 and 9 we get:
h=x=ch(2)=%(n+u) a=y=sh(2)=%(n—u) b=1 35.10

h+a=ch®+shg =n

=
|

QL
Il

ch® —shp = 35.11
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We can define the following trigonometric functions on this triangle:

1
sena

a = h.cosa =

a = h. cosa b=h.sena=1->h=

h? = a2 + b2 -» h? = (h.cosa)? + (h.sena)? — sena + cos?a =1

cosa

35.12

35.13

From 10 and 12 we obtain the relations between the hyperbolic functions and the trigonometric functions:

h =chg = L a=shp =2

sena sena

With 11 and 14 we get:

1 cosa 1+cosa sena 1
n= h+a= +—=———=— -
sena sena sena 1-cosa i
1 cosa 1-cosa sena 1
u= h—a= - = = u=-
sena sena sena 1+cosa n

2 _ (14cosa sena _ l+4cosa _ 1+cosa _
= ( sena )(l—coscx) " 1-cosa -n= \’ 1-cosa K= 1
2 _ (1-cosa sena _ 1l—cosa _ 1-cosa _
= ( sena )(1+coscx) " 1+cosa “H= \’ 14+cosa K= 1

From trigonometry we have:
o ’1—coso¢
tg (E) - 1+cosa
This applied in 17 and 18 results:
_ 1 _ [14cosa =1
n= tg(g) " 4/ 1-cosa K=

L=tg (g) _ |l-cosax =1

1+cosa

In §17 we define the proportion factors n and u as:

{x—ct=n(x—ct)A_)17.04 np=1

X'+ct' =ux+ct)B
Equations 22 and their inverses are:

{x—ct= u' —ct) C {X'—Ct' =n(x—ct)

A
x+ct=nEx"+ct’) D 17.04

X'+ct' =pux+ct) B

Applying 20 and 21 to 23 we get:

1
X—ct=tg(§)(x’—ct’)c X'—Ct'=@(X—Ct) A
2
__1 '
x+ct—tg(%)(x +ct) D x’+ct'=tg(g)(x+ct) B
o x—ct o x'+ct!
tg (Z) T x—ct! tg (;) T x+ct
o x—ct o x'+ct!
tg (Z) T x—ct! tg (;) T x+ct
t (g _ox—ct _ x'+ct’
8\2) T vt T xret

In 27 we have the description of two right triangles with the same angles.

In the following table according to 23 we have the geometry that describes 27.
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35.14

35.15

35.16

35.17

35.18

35.19

35.20

35.21

35.22

35.23

35.24

35.25

35.26

35.27



The Geometry of Transformations by Hendrik Lorentz (GTHL)

Axle Coordinate Coordinate Dlstanc_e between Dlstanc_e between
X 1Y X Y pomt; of pomt; of
X axis Y axis

Ponto Observer O Observer O’

0 Zero zero X0 X1 |[x—ct| X0 Y1 | x' —ct

1 Xx—ct=pu —ct) x'—ct' =n(x—ct) X1 & X2 ct Y1 & Y2 ct

2 X X’ X2 & X3 ct Y2 & Y3 ct’

3 x+ct=nx"+ct) X +ct' = px + ct)

The X and Y axes are perpendicular X_LY.

Observer O is on the X axis and Observer O' is on the Y axis.
The line joining X1 < Y1 makes angle a/2 with the Y axis.
The line joining X3 & Y3 makes angle a/2 with the X axis.

Doing on 23 the additions (C+D) and (A+B) and the subtractions (D-C) and (B-A) yields the H. Lorentz
Transforms of 28 in primary form without any consideration of the propagation of a light ray. The same is
obtained from the GTHL table if, for both coordinates, we average the sum of point 1 with point 3 or the
average of the subtraction of point 3 minus point 1.

{x—ct=u(x’—ct’) C {x’—ct’=n(x—ct) A

x+ct=nX +ct’) D X'+ct'=px+ct) B 17.04 nu=1 35.23

{x=%[n(x’+ct’)+u(x’—ct’)] >x>ct—> AX =%[u(x+ct)+n(x—ct)] >x' >ct'> C
35.28

ct= %[n(x’ +ct)—px' —ct)] > ct<x-> Bct' = %[u(x+ct) —nx—ct)]oct' <x'> D

In the Lorentz Transforms of 28 for both observers Space is greater than time. Consequently space

propagates at a speed that is greater than the speed of propagation of time which propagates at the speed
of light.

"Although nobody can return behind and perform a new beginning,
any one can begin now and create a new end"
(Chico Xavier)
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